1
|
Llewellyn J, Hubbard SJ, Swift J. Translation is an emerging constraint on protein homeostasis in ageing. Trends Cell Biol 2024; 34:646-656. [PMID: 38423854 DOI: 10.1016/j.tcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.
Collapse
Affiliation(s)
- Jack Llewellyn
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
3
|
Lessons Learned from Two Decades of Modeling the Heat-Shock Response. Biomolecules 2022; 12:biom12111645. [DOI: 10.3390/biom12111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Heat Shock Response (HSR) is a highly conserved genetic system charged with protecting the proteome in a wide range of organisms and species. Experiments since the early 1980s have elucidated key elements in these pathways and revealed a canonical mode of regulation, which relies on a titration feedback. This system has been subject to substantial modeling work, addressing questions about resilience, design and control. The compact core regulatory circuit, as well as its apparent conservation, make this system an ideal ‘hydrogen atom’ model for the regulation of stress response. Here we take a broad view of the models of the HSR, focusing on the different questions asked and the approaches taken. After 20 years of modeling work, we ask what lessons had been learned that would have been hard to discover without mathematical models. We find that while existing models lay strong foundations, many important questions that can benefit from quantitative modeling are still awaiting investigation.
Collapse
|
4
|
Knockdown of heat shock transcription factor 1 decreases temperature stress tolerance in Bemisia tabaci MED. Sci Rep 2022; 12:16059. [PMID: 36163391 PMCID: PMC9512819 DOI: 10.1038/s41598-022-19788-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
The primary function of heat shock transcription factor (HSF) in the heat shock response is to activate the transcription of genes encoding heat shock proteins (HSPs). The phloem-feeding insect Bemisia tabaci (Gennadius) is an important pest of cotton, vegetables and ornamentals that transmits several plant viruses and causes enormous agricultural losses. In this study, the gene encoding HSF (Bthsf1) was characterized in MED B. tabaci. The full-length cDNA encoded a protein of 652 amino acids with an isoelectric point of 5.55. The BtHSF1 deduced amino acid sequence showed strong similarity to HSF in other insects. Expression analyses using quantitative real-time PCR indicated that Bthsf1 was significantly up-regulated in B. tabaci adults and pupae during thermal stress. Although Bthsf1 was induced by both hot and cold stress, the amplitude of expression was greater in the former. Bthsf1 had distinct, significant differences in expression pattern during different duration of high but not low temperature stress. Oral ingestion of dsBthsf1 repressed the expression of Bthsf1 and four heat shock proteins (Bthsp90, Bthsp70-3, Bthsp20 and Bthsp19.5) in MED B. tabaci during hot and cold stress. In conclusion, our results show that Bthsf1 is differentially expressed during high and low temperature stress and regulates the transcription of multiple hsps in MED B. tabaci.
Collapse
|
5
|
Guilbert M, Courtade E, Thommen Q. Cellular Environment and Phenotypic Heterogeneity: How Data-Driven Modeling Finds the Smoking Gun. Int J Mol Sci 2022; 23:ijms23126536. [PMID: 35742979 PMCID: PMC9223694 DOI: 10.3390/ijms23126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
The cellular environment modifies cellular phenotypes, in particular, the stress response phenotype, which easily exhibits high phenotypic heterogeneity due to the common characteristics of its regulatory networks. The aim of this work is to quantify and interpret the impact of collagen type I, a major component of the cellular environment, on the phenotypic heterogeneity of the cellular response. Our approach combines in an original way the monitoring of the response of a single cell and the mathematical modeling of the network. After a detailed statistical description of the phenotypic heterogeneity of the cellular response, the mathematical modeling explains how the observed changes can be explained by an induced increase in the average expression of a central protein of the regulatory network. The predictions of the data-driven model are fully consistent with the biochemical measurements performed. The framework presented here is also a new general methodology to study phenotypic heterogeneity, although we focus here on the response to proteotoxic stress in HeLa cells.
Collapse
Affiliation(s)
- Marie Guilbert
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, University of Lille, F-59000 Lille, France; (M.G.); (E.C.)
| | - Emmanuel Courtade
- CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, University of Lille, F-59000 Lille, France; (M.G.); (E.C.)
| | - Quentin Thommen
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
6
|
Dumas A, Liao KL, Jeffries KM. Mathematical modeling and analysis of the heat shock protein response during thermal stress in fish and HeLa cells. Math Biosci 2021; 346:108692. [PMID: 34481823 DOI: 10.1016/j.mbs.2021.108692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/15/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
The climate change has the potential to dramatically affect species' thermal physiology and may change the ecology and evolution of species' lineages. In this work, we investigated the transition of dynamics in the heat shock response when the thermal stress approaches the upper thermal limits of species to understand how the climate change may affect the heat shock responses in ectotherms and endotherms. The heat shock protein 70, HSP70, prevents protein denaturation or misfolding under thermal stresses. When thermal stress increases, the number of misfolded proteins increases, which leads to high levels of HSP70 protein. However, when temperatures approach limits of thermal tolerance (i.e., the critical thermal maximum, CTmax, for ectotherms and the superior critical temperature, SCT, for endotherms), levels of HSP70 protein synthesis start to decrease. Thus, we hypothesized that the temperature at the first reduction of HSP abundance indicates the thermal limits of the species. In this work, we provide a mathematical model to investigate the behavior of the heat shock responses related to HSP70 protein. This model captures the dynamics of HSP70 protein and Hsp70 mRNA, in HeLa cells (i.e., representative for endotherms) and multiple species of fishes (i.e., representative for ectotherms) with different acclimation histories. Based on our hypothesis of the relationship between the HSP70 protein level and CTmax/SCT, our model provides three methods to predict the CTmax of fishes with varying acclimation temperature and the SCT of HeLa cells. The CTmax increases as the acclimation temperature increases in fishes, however the CTmax plateaus when the acclimation temperature is higher than 20°C in brook trout, a representative cool water salmonid. Our model also captures the situation that the heat shock reaction in fish is more sensitive to the heat shock temperature than HeLa cells, when the heat shock temperature is lower than the upper thermal tolerance. However, both fish and HeLa cells are sensitive to the heat shock temperature when the temperature reaches the thermal tolerance limits. Additionally, our sensitive analysis result indicates that the status of some components in the heat shock reaction changes when the temperature reaches the thermal tolerance resulting in failure in protein refolding in fish and speeding up the refolding process in HeLa cells. Mathematical analysis is also applied on a simplified mathematical model to investigate the detailed dynamics of the model, such as the steady states of the substrate, Hsp70 mRNA, and HSP70 protein, at different thermal stresses. The comparison between the original model and simplified model shows that the inhibition on HSP70 protein transcription by thermal stresses leads to the reduction in HSP70 protein at extreme temperatures.
Collapse
Affiliation(s)
- Annette Dumas
- Department of Mathematics, The ENS de Lyon, Lyon, France
| | - Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Manitoba, R3T 2N2, Canada; Department of Biological Sciences, University of Manitoba, Manitoba, R3T 2N2, Canada.
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Manitoba, R3T 2N2, Canada
| |
Collapse
|
7
|
Pal S, Sharma R. Transcription factors and chaperone proteins play a role in launching a faster response to heat stress and aggregation. Comput Biol Chem 2021; 93:107534. [PMID: 34271421 DOI: 10.1016/j.compbiolchem.2021.107534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/22/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
Proteins, under conditions of cellular stress, typically tend to unfold and form lethal aggregates leading to neurological diseases like Parkinson's and Alzheimer's. A clear understanding of the conditions that favor dis-aggregation and restore the cell to its healthy state after they have been stressed is therefore important in dealing with these diseases. The heat shock response (HSR) mechanism is a signaling network that deals with these undue protein aggregates and aids in the maintenance of homeostasis within a cell. This framework, on its own, is a mathematically well studied mechanism. However, not much is known about how the various intermediate mis-folded protein states of the aggregation process interact with some of the key components of the HSR pathway such as the Heat Shock Protein (HSP), the Heat Shock Transcription Factor (HSF) and the HSP-HSF complex. In this article, using kinetic parameters from the literature, we propose and analyze two mathematical models for HSR that also include explicit reactions for the formation of protein aggregates. Deterministic analysis and stochastic simulations of these models show that the folded proteins and the misfolded aggregates exhibit bistability in a certain region of the parameter space. Further, the models also highlight the role of HSF and the HSF-HSP complex in reducing the time lag of response to stress and in re-folding all the mis-folded proteins back to their native state. These models, therefore, call attention to the significance of studying related pathways such as the HSR and the protein aggregation and re-folding process in conjunction with each other.
Collapse
Affiliation(s)
- Sushmita Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India.
| |
Collapse
|
8
|
Pfeuty B, Courtade E, Thommen Q. Fine-tuned control of stress priming and thermotolerance. Phys Biol 2021; 18. [PMID: 34156353 DOI: 10.1088/1478-3975/ac02a8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022]
Abstract
A common signature of cell adaptation to stress is the improved resistance upon priming by prior stress exposure. In the context of hyperthermia, priming or preconditioning with sublethal heat shock can be a useful tool to confer thermotolerance and competitive advantage to cells. In the present study, we develop a data-driven modeling framework that is simple and generic enough to capture a broad set of adaptation behaviors to heat stress at both molecular and cellular levels. The model recovers the main features of thermotolerance and clarifies the tradeoff principles which maximize the thermotolerance effect. It therefore provides an effective predictive tool to design preconditioning and fractionation hyperthermia protocols for therapeutic purpose.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Emmanuel Courtade
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Quentin Thommen
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
9
|
Labavić D, Ladjimi MT, Courtade E, Pfeuty B, Thommen Q. Mammalian cell sensitivity to hyperthermia in various cell lines: a new universal and predictive description. Int J Hyperthermia 2020; 37:506-516. [DOI: 10.1080/02656736.2020.1762005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- D. Labavić
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - M. T. Ladjimi
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - E. Courtade
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - B. Pfeuty
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Q. Thommen
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
10
|
Guilbert M, Anquez F, Pruvost A, Thommen Q, Courtade E. Protein level variability determines phenotypic heterogeneity in proteotoxic stress response. FEBS J 2020; 287:5345-5361. [PMID: 32222033 DOI: 10.1111/febs.15297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
Abstract
Cell-to-cell variability in stress response is a bottleneck for the construction of accurate and predictive models which could guide clinical diagnosis and treatment of certain diseases, for example, cancer. Indeed, such phenotypic heterogeneity can lead to fractional killing and persistence of a subpopulation of cells which are resistant to a given treatment. The heat shock response network plays a major role in protecting the proteome against several types of injuries. Here, we combine high-throughput measurements and mathematical modeling to unveil the molecular origin of the phenotypic variability in the heat shock response network. Although the mean response coincides with known biochemical measurements, we found a surprisingly broad diversity in single-cell dynamics with a continuum of response amplitudes and temporal shapes for several stimulus strengths. We theoretically predict that the broad phenotypic heterogeneity is due to network ultrasensitivity together with variations in the expression level of chaperones controlled by the transcription factor heat shock factor 1. Furthermore, we experimentally confirm this prediction by mapping the response amplitude to chaperone and heat shock factor 1 expression levels.
Collapse
Affiliation(s)
- Marie Guilbert
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - François Anquez
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Alexandra Pruvost
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Quentin Thommen
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| | - Emmanuel Courtade
- UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules, CNRS, Université de Lille, France
| |
Collapse
|
11
|
Dudziuk G, Wronowska W, Gambin A, Szymańska Z, Rybiński M. Biologically sound formal model of Hsp70 heat induction. J Theor Biol 2019; 478:74-101. [PMID: 31181241 DOI: 10.1016/j.jtbi.2019.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
A proper response to rapid environmental changes is essential for cell survival and requires efficient modifications in the pattern of gene expression. In this respect, a prominent example is Hsp70, a chaperone protein whose synthesis is dynamically regulated in stress conditions. In this paper, we expand a formal model of Hsp70 heat induction originally proposed in previous articles. To accurately capture various modes of heat shock effects, we not only introduce temperature dependencies in transcription to Hsp70 mRNA and in dissociation of transcriptional complexes, but we also derive a new formal expression for the temperature dependence in protein denaturation. We calibrate our model using comprehensive sets of both previously published experimental data and also biologically justified constraints. Interestingly, we obtain a biologically plausible temperature dependence of the transcriptional complex dissociation, despite the lack of biological constraints imposed in the calibration process. Finally, based on a sensitivity analysis of the model carried out in both deterministic and stochastic settings, we suggest that the regulation of the binding of transcriptional complexes plays a key role in Hsp70 induction upon heat shock. In conclusion, we provide a model that is able to capture the essential dynamics of the Hsp70 heat induction whilst being biologically sound in terms of temperature dependencies, description of protein denaturation and imposed calibration constraints.
Collapse
Affiliation(s)
- Grzegorz Dudziuk
- ICM, University of Warsaw, ul. Tyniecka 15/17, Warsaw 02-630, Poland.
| | - Weronika Wronowska
- CeNT, University of Warsaw, ul. Banacha 2c, Warsaw 02-097, Poland; Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, Warsaw 02-096, Poland.
| | - Anna Gambin
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, Warsaw 02-097, Poland.
| | - Zuzanna Szymańska
- ICM, University of Warsaw, ul. Tyniecka 15/17, Warsaw 02-630, Poland; Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, Warsaw 00-656, Poland.
| | - Mikołaj Rybiński
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, Warsaw 02-097, Poland; Department of Biosystems, Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
12
|
Magni S, Succurro A, Skupin A, Ebenhöh O. Data-driven dynamical model indicates that the heat shock response in Chlamydomonas reinhardtii is tailored to handle natural temperature variation. J R Soc Interface 2019; 15:rsif.2017.0965. [PMID: 29720454 PMCID: PMC6000179 DOI: 10.1098/rsif.2017.0965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/06/2018] [Indexed: 12/29/2022] Open
Abstract
Global warming exposes plants to severe heat stress, with consequent crop yield reduction. Organisms exposed to high temperature stresses typically protect themselves with a heat shock response (HSR), where accumulation of unfolded proteins initiates the synthesis of heat shock proteins through the heat shock transcription factor HSF1. While the molecular mechanisms are qualitatively well characterized, our quantitative understanding of the underlying dynamics is still very limited. Here, we study the dynamics of HSR in the photosynthetic model organism Chlamydomonas reinhardtii with a data-driven mathematical model of HSR. We based our dynamical model mostly on mass action kinetics, with a few nonlinear terms. The model was parametrized and validated by several independent datasets obtained from the literature. We demonstrate that HSR quantitatively and significantly differs if an increase in temperature of the same magnitude occurs abruptly, as often applied under laboratory conditions, or gradually, which would rather be expected under natural conditions. In contrast to rapid temperature increases, under gradual changes only negligible amounts of misfolded proteins accumulate, indicating that the HSR of C. reinhardtii efficiently avoids the accumulation of misfolded proteins under conditions most likely to prevail in nature. The mathematical model we developed is a flexible tool to simulate the HSR to different conditions and complements the current experimental approaches.
Collapse
Affiliation(s)
- Stefano Magni
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University, Düsseldorf, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Antonella Succurro
- Botanical Institute, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,University California San Diego, La Jolla, CA, USA
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University, Düsseldorf, Germany .,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
13
|
Ladjimi MT, Labavić D, Guilbert M, Anquez F, Pruvost A, Courtade E, Pfeuty B, Thommen Q. Dynamical thermal dose models and dose time-profile effects. Int J Hyperthermia 2019; 36:721-729. [DOI: 10.1080/02656736.2019.1633478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- M. T. Ladjimi
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| | - D. Labavić
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| | - M. Guilbert
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| | - F. Anquez
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| | - A. Pruvost
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| | - E. Courtade
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| | - B. Pfeuty
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| | - Q. Thommen
- Laboratoire de Physique des Lasers, Atomes et Molécules, UMR-CNRS 8523, Université de Lille, France
| |
Collapse
|
14
|
Labavić D, Ladjimi MT, Thommen Q, Pfeuty B. Scaling laws of cell-fate responses to transient stress. J Theor Biol 2019; 478:14-25. [PMID: 31202789 DOI: 10.1016/j.jtbi.2019.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
Analysis and modelling of dose-survival curves of cells and tissues are often used to assess therapeutic efficacy or environmental risks, much less to infer the intracellular regulatory mechanisms of cellular stress response. However, systematic measurements of how cell survival depends on the time profile of stress, such as exposure duration, provide practical means to decipher the homeostatic dynamics of stress-response regulatory networks. In this paper, we propose a dynamical framework to theoretically address the relationship between cell fate response to a transient stress and the underlying regulatory feedback mechanisms. A simple network topology that couples a homeostatic negative feedback and a death-triggering positive feedback is shown to display four response regimes for which the iso-effect relationships between duration and intensity are captured by specific power laws. These distinct response regimes define several windows of stress duration for which lethality is not merely proportional to the product of intensity and duration, and, thus, for which cells are either more tolerant or more vulnerable to a given dose. Overall, this study highlights the differential roles of feedback strength, timescale and nonlinearity in promoting survivability to particular stress profiles, providing a valuable framework for a comparative analysis of diverse stress-specific regulatory networks.
Collapse
Affiliation(s)
- Darka Labavić
- Univ. Lille CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | - Mohamed Tahar Ladjimi
- Univ. Lille CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Quentin Thommen
- Univ. Lille CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Benjamin Pfeuty
- Univ. Lille CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| |
Collapse
|
15
|
Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 2017; 19:4-19. [PMID: 28852220 DOI: 10.1038/nrm.2017.73] [Citation(s) in RCA: 497] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heat shock transcription factors (HSFs) were discovered over 30 years ago as direct transcriptional activators of genes regulated by thermal stress, encoding heat shock proteins. The accepted paradigm posited that HSFs exclusively activate the expression of protein chaperones in response to conditions that cause protein misfolding by recognizing a simple promoter binding site referred to as a heat shock element. However, we now realize that the mammalian family of HSFs comprises proteins that independently or in concert drive combinatorial gene regulation events that activate or repress transcription in different contexts. Advances in our understanding of HSF structure, post-translational modifications and the breadth of HSF-regulated target genes have revealed exciting new mechanisms that modulate HSFs and shed new light on their roles in physiology and pathology. For example, the ability of HSF1 to protect cells from proteotoxicity and cell death is impaired in neurodegenerative diseases but can be exploited by cancer cells to support their growth, survival and metastasis. These new insights into HSF structure, function and regulation should facilitate the development tof new disease therapeutics to manipulate this transcription factor family.
Collapse
Affiliation(s)
- Rocio Gomez-Pastor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | | | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine.,Department of Biochemistry, Duke University School of Medicine.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|