1
|
Vanella R, Küng C, Schoepfer AA, Doffini V, Ren J, Nash MA. Understanding activity-stability tradeoffs in biocatalysts by enzyme proximity sequencing. Nat Commun 2024; 15:1807. [PMID: 38418512 PMCID: PMC10902396 DOI: 10.1038/s41467-024-45630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024] Open
Abstract
Understanding the complex relationships between enzyme sequence, folding stability and catalytic activity is crucial for applications in industry and biomedicine. However, current enzyme assay technologies are limited by an inability to simultaneously resolve both stability and activity phenotypes and to couple these to gene sequences at large scale. Here we present the development of enzyme proximity sequencing, a deep mutational scanning method that leverages peroxidase-mediated radical labeling with single cell fidelity to dissect the effects of thousands of mutations on stability and catalytic activity of oxidoreductase enzymes in a single experiment. We use enzyme proximity sequencing to analyze how 6399 missense mutations influence folding stability and catalytic activity in a D-amino acid oxidase from Rhodotorula gracilis. The resulting datasets demonstrate activity-based constraints that limit folding stability during natural evolution, and identify hotspots distant from the active site as candidates for mutations that improve catalytic activity without sacrificing stability. Enzyme proximity sequencing can be extended to other enzyme classes and provides valuable insights into biophysical principles governing enzyme structure and function.
Collapse
Affiliation(s)
- Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| | - Christoph Küng
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Alexandre A Schoepfer
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- National Center for Competence in Research (NCCR), Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Vanni Doffini
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Jin Ren
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058, Basel, Switzerland.
- Swiss Nanoscience Institute, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Maity A, Majumdar S, Priya P, De P, Saha S, Ghosh Dastidar S. Adaptability in protein structures: structural dynamics and implications in ligand design. J Biomol Struct Dyn 2014; 33:298-321. [PMID: 24433438 DOI: 10.1080/07391102.2013.873002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The basic framework of understanding the mechanisms of protein functions is achieved from the knowledge of their structures which can model the molecular recognition. Recent advancement in the structural biology has revealed that in spite of the availability of the structural data, it is nontrivial to predict the mechanism of the molecular recognition which progresses via situation-dependent structural adaptation. The mutual selectivity of protein-protein and protein-ligand interactions often depends on the modulations of conformations empowered by their inherent flexibility, which in turn regulates the function. The mechanism of a protein's function, which used to be explained by the ideas of 'lock and key' has evolved today as the concept of 'induced fit' as well as the 'population shift' models. It is felt that the 'dynamics' is an essential feature to take into account for understanding the mechanism of protein's function. The design principles of therapeutic molecules suffer from the problems of plasticity of the receptors whose binding conformations are accurately not predictable from the prior knowledge of a template structure. On the other hand, flexibility of the receptors provides the opportunity to improve the binding affinity of a ligand by suitable substitution that will maximize the binding by modulating the receptors surface. In this paper, we discuss with example how the protein's flexibility is correlated with its functions in various systems, revealing the importance of its understanding and for making applications. We also highlight the methodological challenges to investigate it computationally and to account for the flexible nature of the molecules in drug design.
Collapse
Affiliation(s)
- Atanu Maity
- a Bioinformatics Centre, Bose Institute , P-1/12, C.I.T. Scheme VII M, Kolkata 700054 , India
| | | | | | | | | | | |
Collapse
|
3
|
Nagayama M, Maeda H, Kuroda K, Ueda M. Mutated Intramolecular Chaperones Generate High-Activity Isomers of Mature Enzymes. Biochemistry 2012; 51:3547-53. [DOI: 10.1021/bi3001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitsuru Nagayama
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruko Maeda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Kouichi Kuroda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Mitsuyoshi Ueda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Srivastava M, Gupta SK, Abhilash PC, Singh N. Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model 2011; 18:2971-9. [PMID: 22146985 DOI: 10.1007/s00894-011-1320-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
Abstract
Ribosome inactivating proteins (RIPs) are defense proteins in a number of higher-plant species that are directly targeted toward herbivores. Jatropha curcas is one of the biodiesel plants having RIPs. The Jatropha seed meal, after extraction of oil, is rich in curcin, a highly toxic RIP similar to ricin, which makes it unsuitable for animal feed. Although the toxicity of curcin is well documented in the literature, the detailed toxic properties and the 3D structure of curcin has not been determined by X-ray crystallography, NMR spectroscopy or any in silico techniques to date. In this pursuit, the structure of curcin was modeled by a composite approach of 3D structure prediction using threading and ab initio modeling. Assessment of model quality was assessed by methods which include Ramachandran plot analysis and Qmean score estimation. Further, we applied the protein-ligand docking approach to identify the r-RNA binding residue of curcin. The present work provides the first structural insight into the binding mode of r-RNA adenine to the curcin protein and forms the basis for designing future inhibitors of curcin. Cloning of a future peptide inhibitor within J. curcas can produce non-toxic varieties of J. curcas, which would make the seed-cake suitable as animal feed without curcin detoxification.
Collapse
Affiliation(s)
- Mugdha Srivastava
- Eco-Auditing Laboratory, National Botanical Research Institute, CSIR, Lucknow, 226001 Uttar Pradesh, India.
| | | | | | | |
Collapse
|
5
|
Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M. AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 2011; 68:2845-57. [PMID: 21590312 PMCID: PMC11115006 DOI: 10.1007/s00018-011-0724-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/06/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Bacteriocin AS-48 is an intriguing molecule because of its unique structural characteristics, genetic regulation, broad activity spectrum, and potential biotechnological applications. It was the first reported circular bacteriocin and has been undoubtedly the best characterized for the last 25 years. Thus, AS-48 is the prototype of circular bacteriocins (class IV), for which the structure and genetic regulation have been elucidated. This review discusses the state-of-the-art in genetic engineering with regard to this circular protein, with the use of site-directed mutagenesis and circular permutation. Mutagenesis studies have been used to unravel the role of (a) different residues in the biological activity, underlining the relevance of several residues involved in membrane interaction and the low correlation between stability and activity and (b) three amino acids involved in maturation, providing information on the specificity of the leader peptidase and the circularization process itself. To investigate the role of circularity in the stability and biological properties of the enterocin AS-48, two different ways of linearization have been attempted: in vitro by limited proteolysis experiments and in vivo by circular permutation in the structural gene as-48A. The results summarized here show the significance of circularization on the secondary structure, potency and, especially, the stability of AS-48 and point as well to a putative role of the leader peptide as a protecting moiety in the pre-proprotein. Taken all together, the data available on circular bacteriocins support the idea that AS-48 has been engineered by nature to make a remarkably active and stable protein with a broad spectrum of activity.
Collapse
Affiliation(s)
| | - Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
6
|
Montalbán-López M, Martínez-Bueno M, Valdivia E, Maqueda M. Expression of linear permutated variants from circular enterocin AS-48. Biochimie 2010; 93:549-55. [PMID: 21130135 DOI: 10.1016/j.biochi.2010.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
To confirm whether the head-to-tail circularization could be involved in the stability and activity of the circular bacteriocin AS-48, two permutated linear structural as-48A genes have been constructed by circular permutation. The absence of the leaderless linear AS(23/24) and AS(48/49) proteins in Escherichia coli, under all the conditions investigated, supports the idea that the circular backbone is important to stabilize their structure and also indicates the significance of a leader peptide. In fact, the approach taken in this study to generate linear permutated proteins fused to an appropriate partner was sufficient to prevent cellular proteolysis. In this case, the high expression levels found favour their intracellular accumulations as inclusion bodies, which after solubilization showed a propensity to aggregate, thus hindering the specific EK cleavage. This could explain the presence of active hybrid tagged proteins identified in this work. The conserved distribution of hydrophobic and hydrophilic surfaces in the hybrid proteins is responsible for the antibacterial activity. In addition, the opening of the AS-48 molecule between the residues G(23) W(24) connecting the α1/α2 helices, confers greater stability, suggesting that the sequence and/or the free amino acid in the polypeptide chain are critical aspects in the design of new variants.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, C/Fuentenueva s/n, Granada, Spain
| | | | | | | |
Collapse
|
7
|
Oman TJ, van der Donk WA. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 2010; 6:9-18. [PMID: 20016494 PMCID: PMC3799897 DOI: 10.1038/nchembio.286] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avalanche of genomic information in the past decade has revealed that natural product biosynthesis using the ribosomal machinery is much more widespread than originally anticipated. Nearly all of these compounds are crafted through post-translational modifications of a larger precursor peptide that often contains the marching orders for the biosynthetic enzymes. We review here the available information for how the peptide sequences in the precursors govern the post-translational tailoring processes for several classes of natural products. In addition, we highlight the great potential these leader peptide-directed biosynthetic systems offer for engineering conformationally restrained and pharmacophore-rich products with structural diversity that greatly expands the proteinogenic repertoire.
Collapse
Affiliation(s)
- Trent J. Oman
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| | - Wilfred A. van der Donk
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| |
Collapse
|