1
|
Vieira Cardoso II, Nunes Rosa M, Antunes Moreno D, Barbosa Tufi LM, Pereira Ramos L, Bourdeth Pereira LA, Silva L, Soares Galvão JM, Tosi IC, Van Helvoort Lengert A, Cavalcanti Da Cruz M, Teixeira SA, Reis RM, Lopes LF, Tomazini Pinto M. Cisplatin‑resistant germ cell tumor models: An exploration of the epithelial‑mesenchymal transition regulator SLUG. Mol Med Rep 2024; 30:228. [PMID: 39392037 PMCID: PMC11484538 DOI: 10.3892/mmr.2024.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 10/12/2024] Open
Abstract
Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10‑20% of patients with advanced disease demonstrate resistance to cisplatin‑based chemotherapy, and epithelial‑mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (SLUG) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor SLUG in TGCTs. In silico analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin‑resistant model for TGCTs was developed using the NTERA‑2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both in vitro and in vivo within the cisplatin‑resistant models using quantitative PCR and western blot analyses. The results of the in silico analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower SLUG expression had longer median progression‑free survival (46.4 months vs. 28.0 months, P=0.022). In the in vitro analysis, EMT‑associated genes [fibronectin; vimentin (VIM); actin, α2, smooth muscle; collagen type I α1; transforming growth factor‑β1; and SLUG] were upregulated in the cisplatin‑resistant NTERA‑2 (NTERA‑2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA‑2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that SLUG may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting SLUG may be a putative therapeutic strategy to mitigate cisplatin resistance.
Collapse
Affiliation(s)
| | - Marcela Nunes Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | - Lorrayne Pereira Ramos
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | - Lenilson Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | - Isabela Cristiane Tosi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
- Life and Health Sciences Research Institute Medical School, University of Minho, 710057 Braga, Portugal
| | - Luiz Fernando Lopes
- Barretos Children's Cancer Hospital, Hospital de Amor, Barretos, São Paulo 14784400, Brazil
| | - Mariana Tomazini Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
- Barretos Children's Cancer Hospital, Hospital de Amor, Barretos, São Paulo 14784400, Brazil
| |
Collapse
|
2
|
Moori M, Norouzian D, Yaghmaei P, Farahmand L. Electromagnetic field as a possible inhibitor of tumor invasion by declining E-cadherin/N-cadherin switching in triple negative breast cancer. Electromagn Biol Med 2024:1-10. [PMID: 39045872 DOI: 10.1080/15368378.2024.2381575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Breast cancer has been recognized as the most common cancer affecting women. Extremely low-frequency electromagnetic field (ELF-EMF) exposure can influence cellular activities such as cell-cell junctions and metastasis. However, more research is required to determine these fields' underlying mechanisms of action. Since cadherin switching is an important process during EMT (epithelial-mesenchymal transition), in this study, cadherin switching was regarded as one of the probable mechanisms of the effect of ELF-EMFs on metastasis suppression. For five days, breast cells received a 1 Hz, 100mT ELF-EMF (2 h/day). Cell invasion and migration were assessed in vitro by the Scratch wound healing assay and Transwell culture chambers. The expression of E- and N-cadherin was assessed using real-time PCR, western blotting, and Immunocytochemistry. ELF-EMF dramatically reduced the migration and invasion of MDA-MB 231 malignant cells compared to sham exposure, according to the results of the scratch test and the Transwell invasion test. The mRNA and protein expression levels of E-cadherin showed an increase, while the N-cadherin expression was found with a decrease, in MDA-MB231 cells receiving 1 Hz EMF compared to sham exposure. E-cadherin's mRNA and protein expression levels were enhanced in MCF10A cells receiving 1 Hz EMF compared to sham exposure. ELF-EMF can be used as a method for the multifaceted treatments of invasive breast cancer.
Collapse
Affiliation(s)
- Maryam Moori
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Dariush Norouzian
- Pilot Nanobiotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parichehr Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Fang F, Dai Y, Wang H, Ji Y, Liang X, Peng X, Li J, Zhao Y, Li C, Wang D, Li Y, Zhang D, Zhang D, Geng M, Liu H, Ai J, Zhou Y. Structure-based drug discovery of novel fused-pyrazolone carboxamide derivatives as potent and selective AXL inhibitors. Acta Pharm Sin B 2023; 13:4918-4933. [PMID: 38045061 PMCID: PMC10692477 DOI: 10.1016/j.apsb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.
Collapse
Affiliation(s)
| | - Yang Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchun Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangrong Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yu Zhou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
5
|
Cardile A, Passarini C, Zanrè V, Fiore A, Menegazzi M. Hyperforin Enhances Heme Oxygenase-1 Expression Triggering Lipid Peroxidation in BRAF-Mutated Melanoma Cells and Hampers the Expression of Pro-Metastatic Markers. Antioxidants (Basel) 2023; 12:1369. [PMID: 37507910 PMCID: PMC10376533 DOI: 10.3390/antiox12071369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we have identified glutathione peroxidase-4 (GPX-4), a key enzyme involved in cellular protection against iron-induced lipid peroxidation, as one of the molecular targets of HPF. Thus, in three BRAF-mutated melanoma cell lines, we investigated whether iron unbalance and lipid peroxidation may be a part of the molecular mechanisms underlying the antimelanoma activity of HPF. Initially, we focused on heme oxygenase-1 (HO-1), which catalyzes the heme group into CO, biliverdin, and free iron, and observed that HPF treatment triggered the expression of this inducible enzyme. In order to investigate the mechanism involved in HO-1 induction, we verified that HPF downregulates the BTB and CNC homology 1 (BACH-1) transcription factor, an inhibitor of the heme oxygenase 1 (HMOX-1) gene transcription. Remarkably, we observed a partial recovery of cell viability and an increase in the expression of the phosphorylated and active form of retinoblastoma protein when we suppressed the HMOX-1 gene using HMOX-1 siRNA while HPF was present. This suggests that the HO-1 pathway is involved in the cytostatic effect of HPF in melanoma cells. To explore whether lipid peroxidation is induced, we conducted cytofluorimetric analysis and observed a significant increase in the fluorescence of the BODIPY C-11 probe 48 h after HPF administration in all tested melanoma cell lines. To discover the mechanism by which HPF triggers lipid peroxidation, along with the induction of HO-1, we examined the expression of additional proteins associated with iron homeostasis and lipid peroxidation. After HPF administration, we confirmed the downregulation of GPX-4 and observed low expression levels of SLC7A11, a cystine transporter crucial for the glutathione production, and ferritin, able to sequester free iron. A decreased expression level of these proteins can sensitize cells to lipid peroxidation. On the other hand, HPF treatment resulted in increased expression levels of transferrin, which facilitates iron uptake, and LC3B proteins, a molecular marker of autophagy induction. Indeed, ferritin and GPX-4 have been reported to be digested during autophagy. Altogether, these findings suggest that HPF induced lipid peroxidation likely through iron overloading and decreasing the expression of proteins that protect cells from lipid peroxidation. Finally, we examined the expression levels of proteins associated with melanoma cell invasion and metastatic potential. We observed the decreased expression of CD133, octamer-4, tyrosine-kinase receptor AXL, urokinase plasminogen activator receptor, and metalloproteinase-2 following HPF treatment. These findings provide further support for our previous observations, demonstrating the inhibitory effects of HPF on cell motility and colony formation in soft agar, which are both metastasis-related processes in tumor cells.
Collapse
Affiliation(s)
- Alessia Cardile
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Carlotta Passarini
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Valentina Zanrè
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Alessandra Fiore
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| |
Collapse
|
6
|
Fitzpatrick X, Fayzullin A, Wang G, Parker L, Dokos S, Guller A. Cells-in-Touch: 3D Printing in Reconstruction and Modelling of Microscopic Biological Geometries for Education and Future Research Applications. Bioengineering (Basel) 2023; 10:687. [PMID: 37370618 DOI: 10.3390/bioengineering10060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Additive manufacturing (3D printing) and computer-aided design (CAD) still have limited uptake in biomedical and bioengineering research and education, despite the significant potential of these technologies. The utility of organ-scale 3D-printed models of living structures is widely appreciated, while the workflows for microscopy data translation into tactile accessible replicas are not well developed yet. Here, we demonstrate an accessible and reproducible CAD-based methodology for generating 3D-printed scalable models of human cells cultured in vitro and imaged using conventional scanning confocal microscopy with fused deposition modeling (FDM) 3D printing. We termed this technology CiTo-3DP (Cells-in-Touch for 3D Printing). As a proof-of-concept, we created dismountable CiTo-3DP models of human epithelial, mesenchymal, and neural cells by using selectively stained nuclei and cytoskeletal components. We also provide educational and research context for the presented cellular models. In the future, the CiTo-3DP approach can be adapted to different imaging and 3D printing modalities and comprehensively present various cell types, subcellular structures, and extracellular matrices. The resulting CAD and 3D printed models could be used for a broad spectrum of education and research applications.
Collapse
Affiliation(s)
- Xavier Fitzpatrick
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gonglei Wang
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lindsay Parker
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Socrates Dokos
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, Sydney, NSW 2052, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
7
|
Li W, Zhao X, Zhang R, Xie J, Zhang G. Silencing of NLRP3 Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Mediators Inflamm 2023; 2023:7700673. [PMID: 37304662 PMCID: PMC10256449 DOI: 10.1155/2023/7700673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Ovarian cancer is a fatal gynecological malignancy. The resistance to chemotherapy in ovarian cancer treatment has been a thorny issue. This study is aimed at probing the molecular mechanism of cisplatin (DDP) resistance in ovarian cancer. Methods Bioinformatics analysis was conducted to examine the role of Nod-like receptor protein 3 (NLRP3) in ovarian cancer. The NLRP3 level in DDP-resistant ovarian cancer tumors and cell lines (SKOV3/DDP and A2780/DDP) was evaluated by applying immunohistochemical staining, western blot, and qRT-PCR. Cell transfection was conducted to regulate the NLRP3 level. Cell abilities to proliferate, migrate, invade, and apoptosis were measured employing colony formation, CCK-8, wound healing, transwell, and TUNEL assays, respectively. Cell cycle analysis was completed via flow cytometry. Corresponding protein expression was measured by western blot. Results NLRP3 was overexpressed in ovarian cancer, correlated with poor survival, and upregulated in DDP-resistant ovarian cancer tumors and cells. NLRP3 silencing exerted antiproliferative, antimigrative, anti-invasive, and proapoptotic effects in A2780/DDP and SKOV3/DDP cells. Additionally, NLRP3 silencing inactivated NLRPL3 inflammasome and blocked epithelial-mesenchymal transition via enhancing E-cadherin and lowering vimentin, N-cadherin, and fibronectin. Conclusion NLRP3 was overexpressed in DDP-resistant ovarian cancer. NLRP3 knockdown hindered the malignant process of DDP-resistant ovarian cancer cells, providing a potential target for DPP-based ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Weijia Li
- Department of Gynecology, Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Rujian Zhang
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Jiabin Xie
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| |
Collapse
|
8
|
Akhmetkaliyev A, Alibrahim N, Shafiee D, Tulchinsky E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? Mol Cancer 2023; 22:90. [PMID: 37259089 DOI: 10.1186/s12943-023-01793-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET) are genetic determinants of cellular plasticity. These programs operate in physiological (embryonic development, wound healing) and pathological (organ fibrosis, cancer) conditions. In cancer, EMT and MET interfere with various signalling pathways at different levels. This results in gross alterations in the gene expression programs, which affect most, if not all hallmarks of cancer, such as response to proliferative and death-inducing signals, tumorigenicity, and cell stemness. EMT in cancer cells involves large scale reorganisation of the cytoskeleton, loss of epithelial integrity, and gain of mesenchymal traits, such as mesenchymal type of cell migration. In this regard, EMT/MET plasticity is highly relevant to the Go-or-Grow concept, which postulates the dichotomous relationship between cell motility and proliferation. The Go-or-Grow decisions are critically important in the processes in which EMT/MET plasticity takes the central stage, mobilisation of stem cells during wound healing, cancer relapse, and metastasis. Here we outline the maintenance of quiescence in stem cell and metastatic niches, focusing on the implication of EMT/MET regulatory networks in Go-or-Grow switches. In particular, we discuss the analogy between cells residing in hybrid quasi-mesenchymal states and GAlert, an intermediate phase allowing quiescent stem cells to enter the cell cycle rapidly.
Collapse
Affiliation(s)
- Azamat Akhmetkaliyev
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | | | - Darya Shafiee
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
9
|
Viswanathan S, Palaniyandi T, Chellam DC, Ahmed MF, Shoban N, Pushpakumar M, Abdul Wahab MR, Baskar G, Ravi M, Sivaji A, Natarajan S, Sankareswaran SK. Anti-cancer activity of Hypnea valentiae seaweed loaded gold nanoparticles through EMT signaling pathway in A549 cells. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Whole-Transcriptome Sequencing Combined with High-Dimensional Proteomic Technologies Reveals the Potential Value of miR-135b-5p as a Biomarker for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6517963. [PMID: 36755690 PMCID: PMC9902149 DOI: 10.1155/2023/6517963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 01/31/2023]
Abstract
Purpose Hepatocellular carcinoma (HCC) is a disease with great heterogeneity and a high mortality rate. It is crucial to identify reliable biomarkers for diagnosis, prognosis, and treatment to improve clinical outcomes in patients with HCC. Alpha-fetoprotein (AFP) is not only a widely used biomarker in clinical practice but also plays a complicated role in HCC, and it has recently been considered to be related to immunotherapy. MicroRNAs (miRNAs) are regarded as key regulators and promising biomarkers of HCC. We investigated the role of an AFP-related miRNA, miR-135b-5p, in HCC progression. Methods Identification of miR-135b-5p was performed based on a cohort of 65 HCC cases and the liver hepatocellular carcinoma cohort of The Cancer Genome Atlas (Asian people only). A combination of whole-transcriptome sequencing and high-dimensional proteomic technologies was used to study the role of miR-135b-5p in HCC. Results Upregulation of miR-135b-5p was detected in patients with HCC with high serum AFP levels (AFP > 400 ng/ml). Elevated miR-135b-5p expression was associated with adverse prognosis. We also identified the relevance between high miR-135b-5p expression and tumor-related pathological characteristics, such as Edmondson grade and vascular invasion. We revealed tyrosine kinase nonreceptor 1 as a potential target of miR-135b-5p. Additionally, the transcriptional start site of miR-135b-5p had potential binding sites for SRY-box transcription factor 9, and the stemness properties of tumor cells were more remarkable in HCC with the upregulation of miR-135b-5p. The molecular characterization of the miR-135b-5p-high group was similar to that of the HCC subclasses containing moderately and poorly differentiated tumors. Finally, gene signatures associated with improved clinical outcomes in immune checkpoint inhibitor therapy were upregulated in the miR-135b-5p-high group. Conclusion miR-135b-5p could be a biomarker for predicting the prognosis and antiprogrammed cell death protein 1 monotherapy response in HCC.
Collapse
|
11
|
Lv Y, Xu L. Tamoxifen Regulates Epithelial–Mesenchymal Transition in Endometrial Cancer <i>via</i> the CANP10/NRP1 Signaling Pathway. Biol Pharm Bull 2022; 45:1818-1824. [DOI: 10.1248/bpb.b22-00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | - Lei Xu
- Yantai Yuhuangding Hospital
| |
Collapse
|
12
|
Li Q, Wang Y, Liu F, Wang H, Fan Y. LRSAM1 E3 Ubiquitin Ligase Promotes Choriocarcinoma Progression and Metastasis via p53/p21 Signaling Impediment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1926605. [PMID: 36093406 PMCID: PMC9453058 DOI: 10.1155/2022/1926605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Objective The E3 ubiquitin ligase LRSAM1 (LRSAM1) was involved in many cancers, but whether it exerts anti- or protumor efficacies on choriocarcinoma cellular structures remains unknown. We wanted to explore the efficacies of aberrant LRSAM1 expression on human choriocarcinoma cellular structures and the underlying mechanisms. Methods LRSAM1 mRNA expressions in choriocarcinoma lines of cells JEG-3 and JAR cellular structures, as well as HTR8/sev8 human trophoblastic cell line cellular structures, were assessed using assay analysis of quantitative real-time polymerase chain reactions. We compared cell proliferation, migratory flow, invasive force, adhesion, and apoptotic process between cellular structures infected with si-LRSAM1 plasmids versus negative controls using CCK-8, clone formation, Transwell, adhesion, and flow cytometry assays. Protein expressions of LRSAM1, E-cadherin, and N-cadherin (indicators of epithelial-mesenchymal transformation) and p53/p21 pathway components were quantitated using a Western blot assay. The morphology of tumor lesions was observed in xenografted nude mice using immunohistochemistry (IHC) analyses. Results LRSAM1 was markedly overexpressed within JEG-3 and JAR choriocarcinoma cellular structures compared to HTR8/sev8 trophoblast cellular structures. Compared to si-NC, LRSAM1 knockdown robustly restricted cell proliferating, migratory flow, invasive force, and adhesion and fueled apoptotic cell process in JEG-3 as well as JAR cellular structures and suppressed tumor growth, as evidenced by the reduction in tumor volume and weight in naked mice inoculated with transfected cellular structures. Compared to si-negative control (si-NC), si-LRSAM1 significantly decreased Ki67 (a proliferating indicator) and N-cadherin expressions but reduced E-cadherin expression in JEG-3 and JAR cellular structures. Blocking the p53/p21 pathway by pifithrin-a (a p53 restrictor) successfully reversed the anti-inhibitory effect of LRSAM1 depletion, resulting in enhanced proliferating and metastasis in JEG-3 and JAR cellular structures. Conclusion LRSAM1 exerts tumorigenic roles in choriocarcinoma. Via the activating of the p53/p21 pathway of signaling and impediment of choriocarcinoma cell proliferating, migratory flow, and invasive force, LRSAM1 knockdown slows the course of the disease. For choriocarcinoma diagnosis and treatment, it serves as a new therapeutic target.
Collapse
Affiliation(s)
- Qiumin Li
- Department of Obstetrics, Shaanxi Provincial People's Hospital, China
| | - Ying Wang
- Department of Obstetrics, Shaanxi Provincial People's Hospital, China
| | - Feifei Liu
- Department of Obstetrics, Shaanxi Provincial People's Hospital, China
| | - Haili Wang
- Department of Obstetrics, Shaanxi Provincial People's Hospital, China
| | - Yangyang Fan
- Department of Obstetrics, Shaanxi Provincial People's Hospital, China
| |
Collapse
|
13
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
14
|
Zi D, Li Q, Xu CX, Zhou ZW, Song GB, Hu CB, Wen F, Yang HL, Nie L, Zhao X, Tan J, Zhou SF, He ZX. CXCR4 knockdown enhances sensitivity of paclitaxel via the PI3K/Akt/mTOR pathway in ovarian carcinoma. Aging (Albany NY) 2022; 14:4673-4698. [PMID: 35681259 PMCID: PMC9217704 DOI: 10.18632/aging.203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy. EOC control remains difficult, and EOC patients show poor prognosis regarding metastasis and chemotherapy resistance. The aim of this study was to estimate the effect of CXCR4 knockdown-mediated reduction of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) stemness and enhancement of chemotherapy sensitivity in EOC. Mechanisms contributing to these effects were also explored. Our data showed distinct contribution of CXCR4 overexpression by dependent PI3K/Akt/mTOR signaling pathway in EOC development. CXCR4 knockdown resulted in a reduction in CSCs and EMT formation and enhancement of chemotherapy sensitivity in tumor cells, which was further advanced by blocking CXCR4-PI3K/Akt/mTOR signaling. This study also documented the critical role of silencing CXCR4 in sensitizing ovarian CSCs to chemotherapy. Thus, targeting CXCR4 to suppress EOC progression, specifically in combination with paclitaxel (PTX) treatment, may have clinical application value.
Collapse
Affiliation(s)
- Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Endemic and Ethnic Diseases and Key Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Yuzhong 40042, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Cheng-xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Yuzhong 40042, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zhi-Wei Zhou
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guan-Bin Song
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Bin Hu
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Fang Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Han-Lin Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Lei Nie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Xing Zhao
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases and Key Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Zhi-Xu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
15
|
de Souza Oliveira PF, Faria AVS, Clerici SP, Akagi EM, Carvalho HF, Justo GZ, Durán N, Ferreira-Halder CV. Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition. J Cell Biochem 2022; 123:1247-1258. [PMID: 35661241 DOI: 10.1002/jcb.30295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Violacein is a secondary metabolite produced by several microorganisms including Chromobacterium violaceum, and it is already used in food and cosmetics. However, due to its potent anticancer and low side effects, its molecular action needs to be deeply scrutinized. Therefore, the main objective of this study was to evaluate the violacein's ability to interfere with three cancer hallmarks: growth factors receptor-dependent signaling, proliferation, and epithelial-mesenchymal transition (EMT). Violacein has been associated with the induction of apoptosis in colorectal cancer (CRC) cells. Here, we demonstrate that this molecule is also active in CRC spheroids and inhibits cell migration. Violacein treatment reduced the amount of EGFR and AXL receptors in the HT29 cell line. Accordingly, the inhibition of the AKT, ERK, and PKCδ kinases, which are downstream mediators of the signaling pathways triggered by EGFR and AXL, is detected. Another interesting finding was that even when the cells were stimulated with transforming growth factor-β, the EMT marker (N-cadherin) decreased. Therefore, this study provides further evidence that reinforces the potential of violacein as an antitumor agent, once this biomolecule can "switch off" properties associated with cancer plasticity.
Collapse
Affiliation(s)
| | - Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Stefano P Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Erica M Akagi
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Department of Pharmaceutical Sciences and Biochemistry, Federal University of São Paulo (UNIFESP-Diadema), São Paulo, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
17
|
Quantum dots based in-vitro co-culture cancer model for identification of rare cancer cell heterogeneity. Sci Rep 2022; 12:5868. [PMID: 35393460 PMCID: PMC8991261 DOI: 10.1038/s41598-022-09702-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer cell heterogeneity (CCH) is crucial in understanding cancer progression and metastasis. The CCH is one of the stumbling blocks in modern medicine's therapeutics and diagnostics . An in-vitro model of co-culture systems of MCF-7, HeLa, HEK-293, with THP-1 cells showed the occurrence of EpCAM positive (EpCAM+) and EpCAM negative (EpCAM−) heterogenetic cancer cell types labeled with the Quantum Dot antibody conjugates (QDAb). This in-vitro model study could provide insights into the role of rare cancer cells manifestation and their heterogeneity in metastatic progression and risk for severe infections in these patients. We successfully report the presence of CCH based on the fluorescence ratios of the co-cultured cancer cells when treated with the QDAb. These short-term mimic co-cultures give a compelling and quite associated model for assessing early treatment responses in various cancers.
Collapse
|
18
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
19
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
20
|
Xueqin T, Jinhong M, Yuping H. Inhibin subunit beta A promotes cell proliferation and metastasis of breast cancer through Wnt/β-catenin signaling pathway. Bioengineered 2021; 12:11567-11575. [PMID: 34889158 PMCID: PMC8809907 DOI: 10.1080/21655979.2021.1971028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence has demonstrated that inhibin subunit beta A (INHBA) is dysregulated and plays a critical role in various cancers. With the development of sequencing technology, studies have discovered that INHBA is overexpressed in breast cancer tissues. However, the biological roles of INHBA in breast cancer are still far to clear. In the present study, we analyzed the INHBA expression in the Cancer Genome Atlas (TCGA) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression of INHBA in breast cancer cell lines. Cell proliferation, invasion and epithelial–mesenchymal transition (EMT) were determined by using CCK-8, EdU, Transwell and western blot assays. The result showed that INHBA was highly expressed in breast cancer cell lines. Functional analysis revealed that silence or elevation of INHBA inhibited or promoted the proliferation, migration, invasion and EMT and Wnt/β-catenin signaling pathway-related markers of MCF-7 cells. Mechanically, blocking of Wnt/β-catenin pathway by XAV939 reversed the promotion effect of INHBA overexpression on breast cancer cells’ proliferation, migration and invasion. Our findings emphasized that INHBA may act as an oncogene via activating the Wnt/β-catenin pathway, which may provide a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Tao Xueqin
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Mei Jinhong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huang Yuping
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
21
|
Clarke LE, Cook A, Mathavarajah S, Bera A, Salsman J, Habib E, Van Iderstine C, Bydoun M, Lewis SM, Dellaire G. Haploinsufficient tumor suppressor PRP4K is negatively regulated during epithelial-to-mesenchymal transition. FASEB J 2021; 35:e22001. [PMID: 34674320 PMCID: PMC9298446 DOI: 10.1096/fj.202001063r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 01/28/2023]
Abstract
The pre‐mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial‐to‐mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non‐transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple‐negative breast cancer cells (MDA‐MB‐231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA‐MB‐231 and MCF10A cells and without changes in E‐cadherin. Induction of EMT in MCF10A cells, by treatment with WNT‐5a and TGF‐β1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT‐5a/TGF‐β1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.
Collapse
Affiliation(s)
- Livia E Clarke
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson Cook
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Amit Bera
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elias Habib
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Moamen Bydoun
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.,Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel) 2021; 13:cancers13194864. [PMID: 34638349 PMCID: PMC8507788 DOI: 10.3390/cancers13194864] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases. In normal physiological conditions, AXL is involved in removing dead cells and their remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance. The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become metastatic and drug-resistant. Abstract The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer. Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell survival and increases migratory and invasive potential. In cells of the tumour microenvironment, AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several antibody-based and small molecule AXL inhibitors have been developed and used in preclinical studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL. We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults, in order to disseminate and relapse.
Collapse
|
23
|
Frizzled 7 Activates β-Catenin-Dependent and β-Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handb Exp Pharmacol 2021. [PMID: 34455486 DOI: 10.1007/164_2021_524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Frizzled7 activates β-catenin-dependent and β-catenin-independent Wnt signalling pathways, is highly conserved through evolution from the ancient phylum hydra to man, plays essential roles in stem cells, tissue homeostasis and regeneration in the adult, and is upregulated in diverse cancers. Much of what is known about the core components of the Wnt signalling pathways was derived from studying the function of Frizzled7 orthologues in the development of lower organism. As we interrogate Frizzled7 signalling and function for therapeutic targeting in cancer, it is timely to revisit lower organisms to gain insight into the context dependent and dynamic nature of Wnt signalling for effective drug design.
Collapse
|
24
|
Wang B, Li H, Zhao X, Zhang W, Zhao G, Wu Z, Zhang R, Dong P, Watari H, Tigyi G, Li W, Yue J. A Luminacin D Analog HL142 Inhibits Ovarian Tumor Growth and Metastasis by Reversing EMT and Attenuating the TGFβ and FAK Pathways. J Cancer 2021; 12:5654-5663. [PMID: 34405025 PMCID: PMC8364639 DOI: 10.7150/jca.61066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/07/2021] [Indexed: 01/10/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is known to contribute to tumor metastasis and chemoresistance. Reversing EMT using small molecule inhibitors to target EMT associated gene expression represents an effective strategy for cancer treatment. The purpose of this study is to test whether a new luminacin D analog HL142 reverses EMT in ovarian cancer (OC) and has the therapeutic potential for OC. We chemically synthesized HL142 and tested its functions in OC cells in vitro and its efficacy in inhibiting ovarian tumor growth and metastasis in vivo using orthotopic OC mouse models. We first demonstrate that ASAP1 is co-amplified and interacts with the focal adhesion kinase (FAK) protein in serous ovarian carcinoma. HL142 inhibits ASAP1 and its interaction protein FAK in highly invasive OVCAR8 and moderately invasive OVCAR3 cells. HL142 inhibits EMT phenotypic switch, accompanied by upregulating epithelial marker E-cadherin and cytokeratin-7 and downregulating mesenchymal markers vimentin, β-catenin, and snail2 in both cell lines. Functionally, HL142 inhibits proliferation, colony formation, migration, and invasion. HL142 also sensitizes cell responses to chemotherapy drug paclitaxel treatment and inhibits ovarian tumor growth and metastasis in orthotopic OC mouse models. We further show that HL142 attenuates the TGFβ and FAK pathways in vitro using OC cells and in vivo using orthotopic mouse models.
Collapse
Affiliation(s)
- Baojin Wang
- Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,Department of Pathology and Laboratory Medicine, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xinxin Zhao
- Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,Department of Pathology and Laboratory Medicine, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wenjing Zhang
- Department of Genetics, Genomics & Informatics, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ruitao Zhang
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Peixin Dong
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gabor Tigyi
- Center for Cancer Research, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Department of Physiology, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, College of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
25
|
Phytomedicines Targeting Cancer Stem Cells: Therapeutic Opportunities and Prospects for Pharmaceutical Development. Pharmaceuticals (Basel) 2021; 14:ph14070676. [PMID: 34358102 PMCID: PMC8308767 DOI: 10.3390/ph14070676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial–mesenchymal transition (EMT) and resulted in the development of aggressive tumors. CSCs have potential to modulate numerous signaling pathways including Wnt, Hh, and Notch, therefore increasing the stem-like characteristics of cancer cells. The raised expression of drug efflux pump and suppression of apoptosis has shown increased resistance with anti-cancer drugs. Among many agents which were shown to modulate these, the plant-derived bioactive agents appear to modulate these key regulators and were shown to remove CSCs. This review aims to comprehensively scrutinize the preclinical and clinical studies demonstrating the effects of phytocompounds on CSCs isolated from various tumors. Based on the available convincing literature from preclinical studies, with some clinical data, it is apparent that selective targeting of CSCs with plants, plant preparations, and plant-derived bioactive compounds, termed phytochemicals, may be a promising strategy for the treatment of relapsed cancers.
Collapse
|
26
|
Murphy RJ, Buenzli PR, Tambyah TA, Thompson EW, Hugo HJ, Baker RE, Simpson MJ. The role of mechanical interactions in EMT. Phys Biol 2021; 18. [PMID: 33789261 DOI: 10.1088/1478-3975/abf425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
The detachment of cells from the boundary of an epithelial tissue and the subsequent invasion of these cells into surrounding tissues is important for cancer development and wound healing, and is strongly associated with the epithelial-mesenchymal transition (EMT). Chemical signals, such as TGF-β, produced by surrounding tissue can be uptaken by cells and induce EMT. In this work, we present a novel cell-based discrete mathematical model of mechanical cellular relaxation, cell proliferation, and cell detachment driven by chemically-dependent EMT in an epithelial tissue. A continuum description of the model is then derived in the form of a novel nonlinear free boundary problem. Using the discrete and continuum models we explore how the coupling of chemical transport and mechanical interactions influences EMT, and postulate how this could be used to help control EMT in pathological situations.
Collapse
Affiliation(s)
- Ryan J Murphy
- Queensland University of Technology, Mathematical Sciences, Brisbane, Australia
| | - Pascal R Buenzli
- Queensland University of Technology, Mathematical Sciences, Brisbane, Australia
| | - Tamara A Tambyah
- Queensland University of Technology, Mathematical Sciences, Brisbane, Australia
| | - Erik W Thompson
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia.,Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Honor J Hugo
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia.,Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Ruth E Baker
- University of Oxford, Mathematical Institute, Oxford, United Kingdom
| | - Matthew J Simpson
- Queensland University of Technology, Mathematical Sciences, Brisbane, Australia
| |
Collapse
|
27
|
Gautron A, Bachelot L, Aubry M, Leclerc D, Quéméner AM, Corre S, Rambow F, Paris A, Tardif N, Leclair HM, Marin‐Bejar O, Coulouarn C, Marine J, Galibert M, Gilot D. CRISPR screens identify tumor-promoting genes conferring melanoma cell plasticity and resistance. EMBO Mol Med 2021; 13:e13466. [PMID: 33724679 PMCID: PMC8103100 DOI: 10.15252/emmm.202013466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Most genetic alterations that drive melanoma development and resistance to targeted therapy have been uncovered. In contrast, and despite their increasingly recognized contribution, little is known about the non-genetic mechanisms that drive these processes. Here, we performed in vivo gain-of-function CRISPR screens and identified SMAD3, BIRC3, and SLC9A5 as key actors of BRAFi resistance. We show that their expression levels increase during acquisition of BRAFi resistance and remain high in persister cells and during relapse. The upregulation of the SMAD3 transcriptional activity (SMAD3-signature) promotes a mesenchymal-like phenotype and BRAFi resistance by acting as an upstream transcriptional regulator of potent BRAFi-resistance genes such as EGFR and AXL. This SMAD3-signature predicts resistance to both current melanoma therapies in different cohorts. Critically, chemical inhibition of SMAD3 may constitute amenable target for melanoma since it efficiently abrogates persister cells survival. Interestingly, decrease of SMAD3 activity can also be reached by inhibiting the Aryl hydrocarbon Receptor (AhR), another druggable transcription factor governing SMAD3 expression level. Our work highlights novel drug vulnerabilities that can be exploited to develop long-lasting antimelanoma therapies.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Laura Bachelot
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Marc Aubry
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Plateforme GEH, CNRS, InsermBIOSIT ‐ UMS 3480, US_S 018Univ RennesRennesFrance
| | | | - Anaïs M Quéméner
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Sébastien Corre
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Florian Rambow
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | - Anaïs Paris
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Nina Tardif
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Héloïse M Leclair
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
| | - Oskar Marin‐Bejar
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | | | - Jean‐Christophe Marine
- Department of OncologyKU LeuvenLeuvenBelgium
- VIB Center for Cancer BiologyVIBLeuvenBelgium
| | - Marie‐Dominique Galibert
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Service de Génétique Moléculaire et GénomiqueCHU RennesRennesFrance
| | - David Gilot
- CNRSIGDR (Institut de génétique et développement de Rennes)‐UMR 6290Univ RennesRennesFrance
- Present address:
INSERM U1242Centre Eugène MarquisRennesFrance
| |
Collapse
|
28
|
MiR-106b-5p regulates the migration and invasion of colorectal cancer cells by targeting FAT4. Biosci Rep 2021; 40:226683. [PMID: 33063118 PMCID: PMC7607192 DOI: 10.1042/bsr20200098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-106b-5p (miR-106b-5p) is involved in the development of many cancers including colorectal cancer (CRC), and FAT4 is correlated with regulation of growth and apoptosis of cancer cells. The present study aimed to investigate the relation between FAT4 and miR-106b-5p and the underlying mechanism of the two on the development of CRC. Quantitative real-time PCR (qRT-PCR) assay and Western blot (WB) analysis were performed to detect the expressions of messenger RNAs (mRNAs), microRNAs (miRNAs) and proteins. The viability of CRC cells was detected by cell counting kit-8 (CCK-8). Scratch test and transwell assay were performed to measure the migration and invasion of CRC cell. Tumor angiogenesis was simulated by in vitro angiogenesis experiment. Dual-luciferase reporter assay was performed to verify the targeting relation between miR-106b-5p and FAT4. The study found that the expression of FAT4 was down-regulated and that of miR-106b-5p was up-regulated in CRC tissues. Overexpression of FAT4 resulted in decreased proliferation, migration, invasion and angiogenesis of CRC cells, whereas silencing of FAT4 led to the opposite results. In rescue experiment, miR-106b-5p partially reversed the function of FAT4 in CRC cells, thus playing a carcinogenic role by targeting FAT4 in the CRC cells.
Collapse
|
29
|
Zhao G, Zhang W, Dong P, Watari H, Guo Y, Pfeffer LM, Tigyi G, Yue J. EIF5A2 controls ovarian tumor growth and metastasis by promoting epithelial to mesenchymal transition via the TGFβ pathway. Cell Biosci 2021; 11:70. [PMID: 33827661 PMCID: PMC8025533 DOI: 10.1186/s13578-021-00578-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epithelial to mesenchymal transition (EMT) contributes to tumor metastasis and chemoresistance. Eukaryotic initiation factor 5A2 (EIF5A2) is highly expressed in a variety of human cancers but rarely expressed in normal tissues. While EIF5A2 has oncogenic activity in several cancers and contributes to tumor metastasis, its role in ovarian cancer is unknown. In this study, we investigate whether EIF5A2 contributes to ovarian tumor metastasis by promoting EMT. METHODS To investigate the role of EIF5A2, we knocked out (KO) EIF5A2 using lentiviral CRISPR/Cas9 nickase in high invasive SKOV3 and OVCAR8 cells and overexpressed EIF5A2 in low invasive OVCAR3 cells using lentiviral vector. Cell proliferation, migration and invasion was examined in vitro ovarian cancer cells and tumor metastasis was evaluated in vivo using orthotopic ovarian cancer mouse models. RESULTS Here we report that EIF5A2 is highly expressed in ovarian cancers and associated with patient poor survival. Lentiviral CRISPR/Cas9 nickase vector mediated knockout (KO) of EIF5A2 inhibits epithelial to mesenchymal transition (EMT) in SKOV3 and OVCAR8 ovarian cancer cells that express high levels of EIF5A2. In contrast, overexpression of EIF5A2 promotes EMT in OVCAR3 epithelial adenocarcinoma cells that express relatively low EIF5A2 levels. KO of EIF5A2 in SKOV3 and OVCAR8 cells inhibits ovarian cancer cell migration and invasion, while its overexpression promotes cell migration and invasion in OVCAR3 adenocarcinoma cells. We further demonstrate that EIF5A2 promotes EMT by activating the TGFβ pathway and KO of EIF5A2 inhibits ovarian tumor growth and metastasis in orthotopic ovarian cancer mouse models. CONCLUSION Our results indicate that EIF5A2 is an important controller of ovarian tumor growth and metastasis by promoting EMT and activating the TGFβ pathway.
Collapse
Affiliation(s)
- Guannan Zhao
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Wenjing Zhang
- Department of Genetics, Genomics & Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638 Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638 Japan
| | - Yuqi Guo
- People′s Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
30
|
Tian X, Yu H, Li D, Jin G, Dai S, Gong P, Kong C, Wang X. The miR-5694/AF9/Snail Axis Provides Metastatic Advantages and a Therapeutic Target in Basal-like Breast Cancer. Mol Ther 2021; 29:1239-1257. [PMID: 33221433 PMCID: PMC7934584 DOI: 10.1016/j.ymthe.2020.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/30/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic deregulation, especially mutagenesis or the abnormal expression of epigenetic regulatory factors (ERFs), plays an important role in malignant tumorigenesis. To screen natural inhibitors of breast cancer metastasis, we adopted small interfering RNAs (siRNAs) to transiently knock down 591 ERF-coding genes in luminal breast cancer MCF-7 cells and found that depletion of AF9 significantly promoted MCF-7 cell invasion and migration. A mouse model of metastasis further confirmed the suppressive role of AF9 in breast cancer metastasis. RNA profiling revealed enrichment of AF9 targets genes in the epithelial-mesenchymal transition (EMT). Mechanistically, tandem mass spectrometry showed that AF9 interacts with Snail, which hampers Snail transcriptional activity in basal-like breast cancer (BLBC) cells. AF9 reconstitutes an activated state on the promoter of Snail, which is a master regulator of EMT, and derepresses genes by recruiting CBP or GCN5. Additionally, microRNA-5694 (miR-5694) targeted and degraded AF9 messenger RNA (mRNA) in BLBC cells, further enhancing cell invasion and migration. Notably, AF9 and miR-5694 expression in BLBC clinical samples correlated inversely. Hence, miR-5694 mediates downregulation of AF9 and provides metastatic advantages in BLBC. Restoring expression of the metastasis suppressor AF9 is a possible therapeutic strategy against metastatic breast cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Proliferation
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Neoplasm Invasiveness
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Prognosis
- RNA, Small Interfering/genetics
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xin Tian
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Hua Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Dong Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, The China Welfare Institute, Shanghai 200030, China
| | - Guojiang Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shundong Dai
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Pengchao Gong
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Cuicui Kong
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiongjun Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Cheng F, Dou J, Zhang Y, Wang X, Wei H, Zhang Z, Cao Y, Wu Z. Urolithin A Inhibits Epithelial-Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway. Onco Targets Ther 2021; 14:3199-3208. [PMID: 34040386 PMCID: PMC8139733 DOI: 10.2147/ott.s305595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The epithelial-to-mesenchymal transition (EMT) is a fundamental process in tumor progression that endows cancer cells with migratory and invasive potential. Snail, a zinc finger transcriptional repressor, plays an important role in the induction of EMT by directly repressing the key epithelial marker E-cadherin. Here, we assessed the effect of urolithin A, a major metabolite from pomegranate ellagitannins, on Snail expression and EMT process. METHODS The role of Snail in urolithin A-induced EMT inhibition in lung cancer cells was explored by wound healing assay and cell invasion assay. The qRT-PCR and CHX assay were performed to investigate how urolithin A regulates Snail expression. Immunoprecipitation assays were established to determine the effects of urolithin A in mdm2-Snail interaction. In addition, the expression of p53 was manipulated to explore its effect on the expression of mdm2 and Snail. RESULTS The urolithin A dose-dependently upregulated epithelial marker and decreased mesenchymal markers in lung cancer cells. In addition, exposure to urolithin A decreased cell migratory and invasive capacity. We have further demonstrated that urolithin A inhibits lung cancer cell EMT by decreasing Snail protein expression and activity. Mechanistically, urolithin A disrupts the interaction of p53 and mdm2 which leads Snail ubiquitination and degradation. CONCLUSION We conclude that urolithin A could inhibit EMT process by controlling mainly Snail expression. These results highlighted the role of pomegranate in regulation of EMT program in lung cancer.
Collapse
Affiliation(s)
- Feng Cheng
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Jintao Dou
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Anesthesiology, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Yong Zhang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Xiang Wang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Huijun Wei
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Zhijian Zhang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Yuxiang Cao
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Correspondence: Zhihao Wu Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China Email
| |
Collapse
|
32
|
Ge P, Ma H, Li Y, Ni A, Isa AM, Wang P, Bian S, Shi L, Zong Y, Wang Y, Jiang L, Hagos H, Yuan J, Sun Y, Chen J. Identification of microRNA-Associated-ceRNA Networks Regulating Crop Milk Production in Pigeon ( Columba livia). Genes (Basel) 2020; 12:genes12010039. [PMID: 33396684 PMCID: PMC7824448 DOI: 10.3390/genes12010039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pigeon belongs to altrices. Squab cannot forage independently. Nutrition can only be obtained from crop milk secreted by male and female pigeon. miRNA could regulate many biological events. However, the roles of miRNA and ceRNA in regulating crop milk production are still unknown. In this study, we investigated the miRNAs expression profile of female pigeon crop, explored the potential key genes, and found the regulatory mechanisms of crop milk production. A total of 71 miRNAs were identified differentially expressed significantly. Meanwhile, miR-20b-5p, miR-146b-5p, miR-21-5p, and miR-26b-5p were found to be the key miRNAs regulating lactation. Target genes of these miRNAs participated mainly in cell development; protein and lipid synthesis; and ion signaling processes, such as cell-cell adhesion, epithelial cell morphogenesis, calcium signaling pathway, protein digestion, and absorption. In the ceRNA network, miR-193-5p was located in the central position, and miR-193-5p/CREBRF/LOC110355588, miR-460b-5p/GRHL2/MSTRG.132954, and miR-193-5p/PIK3CD/LOC110355588 regulatory axes were believed to affect lactation. Collectively, our findings enriched the miRNA expression profile of pigeon and provided novel insights into the microRNA-associated-ceRNA networks regulating crop milk production in pigeon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-628-160-05
| |
Collapse
|
33
|
Lei QQ, Huang Y, Li B, Han L, Lv C. MiR-155-5p promotes metastasis and epithelial-mesenchymal transition of renal cell carcinoma by targeting apoptosis-inducing factor. Int J Biol Markers 2020; 36:20-27. [PMID: 33325278 DOI: 10.1177/1724600820978229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although renal cell carcinoma remains one of the most malignant cancers, our understanding of progression and recurrence of this disease is limited. The present study explored the precise role of miR-155-5p in renal cancer metastasis. METHODS The expression of miR-155-5p in renal carcinoma clinical tissues and cells was determined using quantitative real time-polymerase chain reaction. The role of miR-155-5p on tumor cell growth were examined using CCK-8 and colony formation assays. Transwell assay was utilized to identify the role of miR-155-5p on the invasion and migration of renal cancer cells. Markers of epithelial-mesenchymal transition were determined using western blot. The in vivo effects of miR-155-5p on renal cancer cell growth, apoptosis, and metastasis were explored using xenograft mice. Luciferase reporter assay was performed to identify the potential target of miR-155-5p. RESULTS Levels of miR-155-5p were significantly elevated in renal cancer tissues and cell lines. Suppression of miR-155-5p decreased the growth, colony formation, migration, and invasiveness of renal cancer cells. In contrast, overexpression of miR-155-5p led to opposite effects on renal cancer cells. Mechanically, the apoptosis-inducing factor was identified as the target of miR-155-5p. Interference of miR-155-5p significantly increased mRNA and protein expression of the apoptosis-inducing factor, whereas overexpression of miR-155-5p remarkably suppressed the apoptosis-inducing factor levels in renal cancer cells. The xenograft model identified that suppression of miR-155-5p restrained tumor growth and promoted apoptosis, whereas overexpression of miR-155-5p decreased apoptosis and accelerated tumor growth. Moreover, the number of lung metastasis nodules were decreased following injection with anti-miR-155-5p transfected cells, whereas the nodules were remarkably increased after overexpression of miR-155-5p. In addition, in vitro and in vivo assays both confirmed that suppression of miR-155-5p increased the expression of E-cadherin and decreased levels of N-cadherin and Snail, whereas overexpression of miR-155-5p accelerated epithelial-mesenchymal transition progression in renal cancer cells. CONCLUSION These findings demonstrate that miR-155-5p enhances metastasis and epithelial-mesenchymal transition by targeting the apoptosis-inducing factor, suggesting that miR-155-5p represents a novel therapeutic target for renal cancer.
Collapse
Affiliation(s)
- Qing-Qing Lei
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Yuan Huang
- Department of Neurology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Bin Li
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Lu Han
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| | - Cai Lv
- Department of Urology, Haikou Municipal Hospital, Haikou, Hainan, China
| |
Collapse
|
34
|
Low junctional adhesion molecule-A expression is associated with an epithelial to mesenchymal transition and poorer outcomes in high-grade serous carcinoma of uterine adnexa. Mod Pathol 2020; 33:2361-2377. [PMID: 32514162 DOI: 10.1038/s41379-020-0586-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
High-grade serous carcinoma of uterine adnexa (HGSC) is the most frequent histotype of epithelial ovarian cancer and has a poor 5-year survival rate due to late-stage diagnosis and the poor efficacy of standard treatments. Novel biomarkers of cancer outcome are needed to identify new targetable pathways and improve personalized treatments. Cell-surface screening of 26 HGSC cell lines by high-throughput flow cytometry identified junctional adhesion molecule 1 (JAM-A, also known as F11R) as a potential biomarker. Using a multi-labeled immunofluorescent staining coupled with digital image analysis, protein levels of JAM-A were quantified in tissue microarrays from three HGSC patient cohorts: a discovery cohort (n = 101), the Canadian Ovarian Experimental Unified Resource cohort (COEUR, n = 1158), and the Canadian Cancer Trials Group OV16 cohort (n = 267). Low JAM-A level was associated with poorer outcome in the three cohorts by Kaplan-Meier (p = 0.023, p < 0.001, and p = 0.036, respectively) and was an independent marker of shorter survival in the COEUR cohort (HR = 0.517 (0.381-703), p < 0.001). When analyses were restricted to patients treated by taxane-platinum-based chemotherapy, low JAM-A protein expression was associated with poorer responses in the COEUR (p < 0.001) and OV16 cohorts (p = 0.006) by Kaplan-Meier. Decreased JAM-A gene expression was an indicator of poor outcome in gene expression datasets including The Cancer Genome Atlas (n = 606, p = 0.002) and Kaplan-Meier plotter (n = 1816, p = 0.024). Finally, we observed that tumors with decreased JAM-A expression exhibited an enhanced epithelial to mesenchymal transition (EMT) signature. Our results demonstrate that JAM-A expression is a robust prognostic biomarker of HGSC and may be used to discriminate tumors responsive to therapies targeting EMT.
Collapse
|
35
|
The long noncoding RNA EMBP1 inhibits the tumor suppressor miR-9-5p and promotes renal cell carcinoma tumorigenesis. Nefrologia 2020; 40:429-439. [DOI: 10.1016/j.nefro.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022] Open
|
36
|
Schulze AB, Evers G, Görlich D, Mohr M, Marra A, Hillejan L, Rehkämper J, Schmidt LH, Heitkötter B. Tumor infiltrating T cells influence prognosis in stage I-III non-small cell lung cancer. J Thorac Dis 2020; 12:1824-1842. [PMID: 32642087 PMCID: PMC7330340 DOI: 10.21037/jtd-19-3414a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background T cell infiltration in non-small cell lung cancer (NSCLC) is essential for the immunological response to malignant tissue, especially in the era of immune-checkpoint inhibition. To investigate the prognostic impact of CD4+ T helper cells (Th), CD8+ cytotoxic (Tc) and FOXP3+ regulatory T (Treg) cells in NSCLC, we performed this analysis. Methods By counterstaining of CD4, CD8 and FOXP3 we used immunohistochemistry on tissue microarrays (TMA) to evaluate peritumoral Th cells, Treg cells and Tc cells in n=294 NSCLC patients with pTNM stage I–III disease. Results Strong CD4+ infiltration was associated with higher tumor stages and lymphonodal spread. However, strong CD4+ infiltration yielded improved overall survival (OS) (P=0.014) in adenocarcinoma (ADC) and large cell carcinoma (LCC) but not in squamous cell carcinoma (SCC). A CD4/CD8 ratio <1 was associated with high grade NSCLC tumors (P=0.020). High CD8+ T cell infiltration was an independent prognostic factor for OS (P=0.040) and progression-free survival (PFS) (P=0.012) in the entire study collective. The OS benefit of high CD8+ infiltration was especially prominent in PD-L1 negative NSCLC (P=0.001) but not in PD-L1 positive tissue (P=0.335). Moreover, positive FOXP3+ expression in tumor infiltrating lymphocytes was associated with increased OS (P=0.007) and PFS (P=0.014) in SCC but not in ADC and LCC (all P>0.05). Here, prognostic effects were prominent in PD-L1 positive SCC (P=0.023) but not in PD-L1 negative SCC (P=0.236). Conclusions High proportion of CD8+ Tc cells correlated with improved prognostic outcome in stage I–III NSCLC. Th cells and Treg cells have implications on outcome with respect to tumor histology and biology.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, Westfaelische-Wilhelms University Muenster, Muenster, Germany
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Alessandro Marra
- Department of Thoracic Surgery, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Ludger Hillejan
- Department of Thoracic Surgery, Niels-Stensen-Kliniken, Ostercappeln, Germany
| | - Jan Rehkämper
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany.,IV. Medical Department, Pulmonary Medicine and Thoracic Oncology, Klinikum Ingolstadt, Ingolstadt, Germany
| | - Birthe Heitkötter
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
37
|
Baer-Dubowska W, Szaefer H, Majchrzak-Celińska A, Krajka-Kuźniak V. Tannic Acid: Specific Form of Tannins in Cancer Chemoprevention and Therapy-Old and New Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00211-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Purpose of Review
This short review is aimed at providing an updated and comprehensive report on tannic acid biological activities and molecular mechanisms of action most important for cancer prevention and adjuvant therapy.
Recent Findings
Tannic acid (TA), a mixture of digallic acid esters of glucose, is a common ingredient of many foods. The early studies of its anti-mutagenic and anti-tumorigenic activity were mostly demonstrated in the mouse skin model. This activity has been explained by its ability to inhibit carcinogens activation, as well as antioxidant and anti-inflammatory properties. Recently, the cell cycle arrest, apoptosis induction, reduced rate of proliferation, and cell migration and adhesion of several cancer cell lines as a result of TA treatment were described. The underlining mechanisms include modulation of signaling pathways such as EGFR/Jak2/STATs, or inhibition of PKM2 glycolytic enzyme. Moreover, epithelial-to-mesenchymal transition prevention and decrease of cancer stem cells formation by TA were also reported. Besides, TA was found to be potent chemosensitizer overcoming multidrug resistance. Eventually, its specific physicochemical features were found useful for generation of drug-loaded nanoparticles.
Summary
TA was shown to be a very versatile molecule with possible application not only in cancer prophylaxis, as was initially thought, but also in adjuvant cancer therapy. The latter may refer to chemosensitization and its application as a part of drug delivery systems. More studies are required to better explore this subject. In addition, the effect of TA on normal cells and its bioavailability have to better characterized.
Collapse
|
38
|
Cortesi M, Liverani C, Mercatali L, Ibrahim T, Giordano E. Computational models to explore the complexity of the epithelial to mesenchymal transition in cancer. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1488. [PMID: 32208556 DOI: 10.1002/wsbm.1488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 01/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex biological process that plays a key role in cancer progression and metastasis formation. Its activation results in epithelial cells losing adhesion and polarity and becoming capable of migrating from their site of origin. At this step the disease is generally considered incurable. As EMT execution involves several individual molecular components, connected by nontrivial relations, in vitro techniques are often inadequate to capture its complexity. Computational models can be used to complement experiments and provide additional knowledge difficult to build up in a wetlab. Indeed in silico analysis gives the user total control on the system, allowing to identify the contribution of each independent element. In the following, two kinds of approaches to the computational study of EMT will be presented. The first relies on signal transduction networks description and details how changes in gene expression could influence this process, both focusing on specific aspects of the EMT and providing a general frame for this phenomenon easily comparable with experimental data. The second integrates single cell and population level descriptions in a multiscale model that can be considered a more accurate representation of the EMT. The advantages and disadvantages of each approach will be highlighted, together with the importance of coupling computational and experimental results. Finally, the main challenges that need to be addressed to improve our knowledge of the role of EMT in the neoplastic disease and the scientific and translational value of computational models in this respect will be presented. This article is categorized under: Analytical and Computational Methods > Computational Methods.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Laboratory of Cellular and Molecular Engineering "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "G. Marconi" (DEI), Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "G. Marconi" (DEI), Alma Mater Studiorum - University of Bologna, Cesena, Italy.,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Xing J. Bidirectional interplay between physical and biological approaches on studying the epithelial-to-mesenchymal transition. Phys Biol 2020; 17:020201. [PMID: 32109225 PMCID: PMC7155840 DOI: 10.1088/1478-3975/ab73d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Physical approaches have made notable contributions to the study of epithelial-to-mesenchymal transition (EMT), and EMT serves as a model system for advancing physics theories. A collection of reviews and original research papers are included in this special issue.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Physics, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Zajac O, Leclere R, Nicolas A, Meseure D, Marchiò C, Vincent-Salomon A, Roman-Roman S, Schoumacher M, Dubois T. AXL Controls Directed Migration of Mesenchymal Triple-Negative Breast Cancer Cells. Cells 2020; 9:cells9010247. [PMID: 31963783 PMCID: PMC7016818 DOI: 10.3390/cells9010247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with high risk of relapse and metastasis. TNBC is a heterogeneous disease comprising different molecular subtypes including those with mesenchymal features. The tyrosine kinase AXL is expressed in mesenchymal cells and plays a role in drug resistance, migration and metastasis. We confirm that AXL is more expressed in mesenchymal TNBC cells compared to luminal breast cancer cells, and that its invalidation impairs cell migration while having no or little effect on cell viability. Here, we found that AXL controls directed migration. We observed that AXL displays a polarized localization at the Golgi apparatus and the leading edge of migratory mesenchymal TNBC cells. AXL co-localizes with F-actin at the front of the cells. In migratory polarized cells, the specific AXL inhibitor R428 displaces AXL and F-actin from the leading edge to a lateral area localized between the front and the rear of the cells where both are enriched in protrusions. In addition, R428 treatment disrupts the polarized localization of the Golgi apparatus towards the leading edge in migratory cells. Immunohistochemical analysis of aggressive chemo-resistant TNBC samples obtained before treatment reveals inter- and intra-tumor heterogeneity of the percentage of AXL expressing tumor cells, and a preference of these cells to be in contact with the stroma. Taken together, our study demonstrates that AXL controls directed cell migration most likely by regulating cell polarity.
Collapse
Affiliation(s)
- Olivier Zajac
- Breast Cancer Biology Group, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Renaud Leclere
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - André Nicolas
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - Didier Meseure
- Department of Pathology, Platform of Investigative Pathology, Institut Curie, PSL Research University, 75005 Paris, France; (R.L.); (A.N.); (D.M.)
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Via Verdi 8, 10124 Torino TO, Italy;
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Marie Schoumacher
- Center for Therapeutic Innovation Oncology, Institut de Recherches Internationales SERVIER, 92284 Suresnes, France;
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France;
- Correspondence: ; Tel.: +33-156246250
| |
Collapse
|
41
|
Lien K, Mayer W, Herrera R, Rosbe K, Tugizov SM. HIV-1 proteins gp120 and tat induce the epithelial-mesenchymal transition in oral and genital mucosal epithelial cells. PLoS One 2019; 14:e0226343. [PMID: 31869348 PMCID: PMC6927651 DOI: 10.1371/journal.pone.0226343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
The oral, cervical, and genital mucosa, covered by stratified squamous epithelia with polarized organization and strong tight and adherens junctions, play a critical role in preventing transmission of viral pathogens, including human immunodeficiency virus (HIV). HIV-1 interaction with mucosal epithelial cells may depolarize epithelia and disrupt their tight and adherens junctions; however, the molecular mechanism of HIV-induced epithelial disruption has not been completely understood. We showed that prolonged interaction of cell-free HIV-1 virions, and viral envelope and transactivator proteins gp120 and tat, respectively, with tonsil, cervical, and foreskin epithelial cells induces an epithelial-mesenchymal transition (EMT). EMT is an epigenetic process leading to the disruption of mucosal epithelia and allowing the paracellular spread of viral and other pathogens. Interaction of cell-free virions and gp120 and tat proteins with epithelial cells substantially reduced E-cadherin expression and activated vimentin and N-cadherin expression, which are well-known mesenchymal markers. HIV gp120- and tat-induced EMT was mediated by SMAD2 phosphorylation and activation of transcription factors Slug, Snail, Twist1 and ZEB1. Activation of TGF-β and MAPK signaling by gp120, tat, and cell-free HIV virions revealed the critical roles of these signaling pathways in EMT induction. gp120- and tat-induced EMT cells were highly migratory via collagen-coated membranes, which is one of the main features of mesenchymal cells. Inhibitors of TGF-β1 and MAPK signaling reduced HIV-induced EMT, suggesting that inactivation of these signaling pathways may restore the normal barrier function of mucosal epithelia.
Collapse
Affiliation(s)
- Kathy Lien
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Wasima Mayer
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Rossana Herrera
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, CA, United States of America
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California–San Francisco, San Francisco, CA, United States of America
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Yokokawa M, Morita KI, Oikawa Y, Kayamori K, Sakamoto K, Ikeda T, Harada H. Co-expression of EGFR and MET has a synergistic effect on the prognosis of patients with oral squamous cell carcinoma. J Oral Pathol Med 2019; 49:235-242. [PMID: 31762177 DOI: 10.1111/jop.12977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study aimed to elucidate the correlation between gene amplification, protein expression of receptor tyrosine kinase, and prognosis of patients with oral squamous cell carcinoma (OSCC) using immunohistochemistry (IHC) and next-generation sequencing data. METHODS We evaluated data pertaining to 208 patients with OSCC using IHC for epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET). RESULTS High expressions of EGFR and MET were detected in 60 and 41 patients, respectively. We evaluated the association of clinicopathological variables with high expressions of EGFR and/or MET. Distant metastasis was found in 9 of 41 patients (22.0%) and 6 of 15 patients (40.0%) with high expression of MET and high co-expressions of EGFR and MET, respectively; statistically significant differences were detected in both high expression of MET (P = .003) and high co-expressions of EGFR and MET (P = 3.41 × 10-5 ). The cumulative 5-year survival rate of patients with high and low expressions of EGFR or MET was approximately 65% and 85%, respectively. Conversely, among cases with high expressions of EGFR or MET, there was no additional decrease in the survival rate of patients harboring TP53 mutations. Moreover, the survival rate of patients with high co-expression of both EGFR and MET was very poor (22.0%) (P < 1.0 × 10-9 ). CONCLUSION Our findings suggest that evaluation of protein expressions of EGFR and MET may facilitate prognostic assessment of patients with OSCC; in addition, patients with OSCC should be screened for enrollment in clinical trials of combination therapy with EGFR and MET inhibitors.
Collapse
Affiliation(s)
- Misaki Yokokawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-Ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Oikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
43
|
Schulze AB, Schmidt LH, Heitkötter B, Huss S, Mohr M, Marra A, Hillejan L, Görlich D, Barth PJ, Rehkämper J, Evers G. Prognostic impact of CD34 and SMA in cancer-associated fibroblasts in stage I-III NSCLC. Thorac Cancer 2019; 11:120-129. [PMID: 31760702 PMCID: PMC6938745 DOI: 10.1111/1759-7714.13248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background Epithelial‐to‐mesenchymal transition (EMT) is a crucial step in lung cancer pathogenesis. Among others, cancer‐associated fibroblasts (CAFs) are reported to regulate this process. Objectives To investigate the prognostic and clinical impact, we analyzed CD34+ and SMA+ CAFs in non‐small cell lung cancer (NSCLC). Methods Retrospectively, immunohistochemistry was performed to study stromal protein expression of both CD34 and SMA in 304 NSCLC patients with pTNM stage I‐III disease. All tissue samples were embedded on tissue microarrays (TMAs). Results Our analysis revealed an association for CD34+ CAFs with G1/2 tumors and adenocarcinoma histology. Moreover CD34+ CAFs were identified as an independent prognostic factor (both for progression free survival [PFS] and overall survival [OS] in stage I‐III NSCLC). Besides, SMA+ expression correlated with higher pTNM‐tumor stages and lymphatic spread (pN stage). In turn, SMA‐negativity was associated with improved PFS, but no prognostic impact was found on OS. Of interest, neither CD34+ CAFs nor SMA+ CAFs were associated with the primary tumor size, localization and depth of infiltration (pT stage). Conclusions CD34 was identified as an independent prognostic marker in pTNM stage I‐III NSCLC. Moreover, loss of CD34+ CAFs might influence the dedifferentiation of the NSCLC tumor from its cell origin. Finally, SMA+ CAFs are more prevalent in NSCLC tumors of higher stages and lymphonodal positive NSCLC. Key points Expression of CD34 on cancer associated fibroblasts (CAFs) is an independent prognostic factor in stage I‐III NSCLC. SMA+ cancer associated fibroblasts are associated with higher tumor stages in NSCLC and might contribute to tumor progression in NSCLC.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Birthe Heitkötter
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Sebastian Huss
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Alessandro Marra
- Department of Thoracic Surgery, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Ludger Hillejan
- Department of Thoracic Surgery, Niels-Stensen-Kliniken Ostercappeln, Ostercappeln, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Peter J Barth
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Jan Rehkämper
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
44
|
Induction of Acquired Resistance towards EGFR Inhibitor Gefitinib in a Patient-Derived Xenograft Model of Non-Small Cell Lung Cancer and Subsequent Molecular Characterization. Cells 2019; 8:cells8070740. [PMID: 31323891 PMCID: PMC6678194 DOI: 10.3390/cells8070740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023] Open
Abstract
In up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance is inevitable. To model the emergence of drug resistance, an EGFR-driven, patient-derived xenograft (PDX) NSCLC model was treated continuously with Gefitinib in vivo. Over a period of more than three months, three separate clones developed and were subsequently analyzed: Whole exome sequencing and reverse phase protein arrays (RPPAs) were performed to identify the mechanism of resistance. In total, 13 genes were identified, which were mutated in all three resistant lines. Amongst them the mutations in NOMO2, ARHGEF5 and SMTNL2 were predicted as deleterious. The 53 mutated genes specific for at least two of the resistant lines were mainly involved in cell cycle activities or the Fanconi anemia pathway. On a protein level, total EGFR, total Axl, phospho-NFκB, and phospho-Stat1 were upregulated. Stat1, Stat3, MEK1/2, and NFκB displayed enhanced activation in the resistant clones determined by the phosphorylated vs. total protein ratio. In summary, we developed an NSCLC PDX line modelling possible escape mechanism under EGFR treatment. We identified three genes that have not been described before to be involved in an acquired EGFR resistance. Further functional studies are needed to decipher the underlying pathway regulation.
Collapse
|
45
|
Kumar J, Chudasama D, Roberts C, Kubista M, Sjöback R, Chatterjee J, Anikin V, Karteris E, Hall M. Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer. Cells 2019; 8:cells8070732. [PMID: 31319587 PMCID: PMC6678489 DOI: 10.3390/cells8070732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
: Background: Current diagnosis and staging of advanced epithelial ovarian cancer (aEOC) has important limitations and better biomarkers are needed. We investigate the performance of non-haematopoietic circulating cells (CCs) at the time of disease presentation and relapse. Methods: Venous blood was collected prospectively from 37 aEOC patients and 39 volunteers. CCs were evaluated using ImageStream TechnologyTM and specific antibodies to differentiate epithelial cells from haematopoetic cells. qRT-PCR from whole blood of relapsed aEOC patients was carried out for biomarker discovery. Results: Significant numbers of CCs (CK+/WT1+/CD45-) were identified, quantified and characterised from aEOC patients compared to volunteers. CCs are abundant in women with newly diagnosed aEOC, prior to any treatment. Evaluation of RNA from the CCs in relapsed aEOC patients (n = 5) against a 79-gene panel revealed several differentially expressed genes compared to volunteers (n = 14). Size differentiation of CCs versus CD45+ haematopoietic cells was not reliable. Conclusion: CCs of non-haematopoetic origin are prevalent, particularly in patients with newly diagnosed aEOC. Exploiting a CC-rich population in aEOC patients offers insights into a part of the circulating microenvironment.
Collapse
Affiliation(s)
- Juhi Kumar
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Dimple Chudasama
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | | | - Mikael Kubista
- TATAA Biocenter, 411 03 Göteborg, Sweden
- Laboratory of Gene Expression, Institute of Biotechnology CAS, v.v.i., 252 50 Vestec, Czech Republic
| | | | - Jayanta Chatterjee
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Vladimir Anikin
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London UB9 6JH, UK
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Emmanouil Karteris
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Marcia Hall
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
- Mount Vernon Cancer Centre, Middlesex HA6 2RN, UK.
| |
Collapse
|