1
|
Li Y, Qian M, Cheng Y, Qiu X. Robust visualization of membrane protein by aptamer mediated proximity ligation assay and Förster resonance energy transfer. Colloids Surf B Biointerfaces 2024; 248:114486. [PMID: 39756158 DOI: 10.1016/j.colsurfb.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In situ cell imaging plays a crucial role in studying physiological and pathological processes of cells. Proximity ligation assay (PLA) and rolling circle amplification (RCA) are commonly used to study the abundance and interactions of biological macromolecules. The most frequently applied strategy to visualize the RCA products is with single-fluorophore probe, however, cellular auto-fluorescence and unbound fluorescent probes could interfere with RCA products, leading to non-specific signals. Here, we present a novel approach combining aptamer mediated PLA, RCA, and Förster Resonance Energy Transfer (FRET), namely Apt-PLA-RCA-FRET, for sensitive in situ imaging and analysis of the abundances and interactions of membrane proteins such as tetraspanin CD63 and human epidermal growth factor receptor 2 (HER2). Apt-RCA-FRET was initially designed to show its ability to assess the abundance of target proteins on different cells. Dual functional oligonucleotides served as both the aptamer for recognizing specific membrane proteins and the primer of circular DNA for following RCA process, and the resulting RCA products were subsequently imaged by FRET signals from Cy3 to Cy5 probes which hybridized sequentially on them. FRET was demonstrated to show its great potential to resist the interferences of nonspecific fluorescence compared to single-fluorophore strategies. PLA was then introduced to Apt-RCA-FRET to investigate the spatial localization of different proteins on cell membrane and their interactions. Our approach utilizing aptamer as membrane proteins recognition element simply converted the abundance of proteins into nucleic acid signals and facilitated the following signal amplification, thus it serves as an important alternative to methods typically based on antibody and presents a more robust and sensitive method for analyzing the abundances of different cell membrane proteins and their spatial localization, which offers valuable insights into physiological and pathological processes of cells.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meiqi Qian
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuping Cheng
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Yang Q, Hosseini E, Yao P, Pütz S, Gelléri M, Bonn M, Parekh SH, Liu X. Self-Blinking Thioflavin T for Super-resolution Imaging. J Phys Chem Lett 2024; 15:7591-7596. [PMID: 39028951 PMCID: PMC11299178 DOI: 10.1021/acs.jpclett.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Thioflavin T (ThT) is a typical dye used to visualize the aggregation and formation of fibrillar structures, e.g., amyloid fibrils and peptide nanofibrils. ThT has been considered to produce stable fluorescence when interacting with aggregated proteins. For single-molecule localization microscopy (SMLM)-based optical super-resolution imaging, a photoswitching/blinking fluorescence property is required. Here we demonstrate that, in contrast to previous reports, ThT exhibits intrinsic stochastic blinking properties, without the need for blinking imaging buffer, in stable binding conditions. The blinking properties (photon number, blinking time, and on-off duty cycle) of ThT at the single-molecule level (for ultralow concentrations) were investigated under different conditions. As a proof of concept, we performed SMLM imaging of ThT-labeled α-synuclein fibrils measured in air and PBS buffer.
Collapse
Affiliation(s)
- Qiqi Yang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Elnaz Hosseini
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Peigen Yao
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sabine Pütz
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Márton Gelléri
- Institute
of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, University of
Texas at Austin, Austin, Texas 78712, United States
| | - Xiaomin Liu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
3
|
Zhang G, Liao C, Hu JR, Hu HM, Lei YM, Harput S, Ye HR. Nanodroplet-Based Super-Resolution Ultrasound Localization Microscopy. ACS Sens 2023; 8:3294-3306. [PMID: 37607403 DOI: 10.1021/acssensors.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the past decade, super-resolution ultrasound localization microscopy (SR-ULM) has revolutionized ultrasound imaging with its capability to resolve the microvascular structures below the ultrasound diffraction limit. The introduction of this imaging technique enables the visualization, quantification, and characterization of tissue microvasculature. The early implementations of SR-ULM utilize microbubbles (MBs) that require a long image acquisition time due to the requirement of capturing sparsely isolated microbubble signals. The next-generation SR-ULM employs nanodroplets that have the potential to significantly reduce the image acquisition time without sacrificing the resolution. This review discusses various nanodroplet-based ultrasound localization microscopy techniques and their corresponding imaging mechanisms. A summary is given on the preclinical applications of SR-ULM with nanodroplets, and the challenges in the clinical translation of nanodroplet-based SR-ULM are presented while discussing the future perspectives. In conclusion, ultrasound localization microscopy is a promising microvasculature imaging technology that can provide new diagnostic and prognostic information for a wide range of pathologies, such as cancer, heart conditions, and autoimmune diseases, and enable personalized treatment monitoring at a microlevel.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS, Paris 75015, France
| | - Chen Liao
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| |
Collapse
|
4
|
Zhao J, Jiang L, Matlock A, Xu Y, Zhu J, Zhu H, Tian L, Wolozin B, Cheng JX. Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:147. [PMID: 37322011 PMCID: PMC10272128 DOI: 10.1038/s41377-023-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the β-sheet for tau fibril structure is achieved.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Torra J, Viela F, Megías D, Sot B, Flors C. Versatile Near‐Infrared Super‐Resolution Imaging of Amyloid Fibrils with the Fluorogenic Probe CRANAD‐2. Chemistry 2022; 28:e202200026. [DOI: 10.1002/chem.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
| | - Felipe Viela
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
| | - Diego Megías
- Confocal Microscopy Unit; Biotechnology Programme Spanish National Cancer Research Centre (CNIO) Madrid 28029 Spain
| | - Begoña Sot
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| |
Collapse
|
6
|
Liu X, Mao D, Song Y, Zhu L, Isak AN, Lu C, Deng G, Chen F, Sun F, Yang Y, Zhu X, Tan W. Computer-aided design of reversible hybridization chain reaction (CAD-HCR) enables multiplexed single-cell spatial proteomics imaging. SCIENCE ADVANCES 2022; 8:eabk0133. [PMID: 35030012 PMCID: PMC8759754 DOI: 10.1126/sciadv.abk0133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In situ spatial proteomics analysis of a single cell has not been achieved yet, mainly because of insufficient throughput and sensitivity of current techniques. Recent progress on immuno-nucleic acid amplification technology presents tremendous opportunities to address this issue. Here, we report an innovative hybridization chain reaction (HCR) technique that involves computer-aided design (CAD) and reversible assembly. CAD enables highly multiplexed HCR with a sequence database that can work in parallel, while reversible assembly enables the switching of HCR between a working state and a resting state. Thus, CAD-HCR has been successfully adopted for single-cell spatial proteomics analysis. The fluorescence signal of CAD-HCR is comparable with conventional immunofluorescence, and it is positively correlated with the abundance of target proteins, which is beneficial for the visualization of proteins. The method developed here expands the toolbox of single-cell analysis and proteomics studies, as well as the performance and application of HCR.
Collapse
Affiliation(s)
- Xiaohao Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liucun Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Albertina N. Isak
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Cuicui Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guoli Deng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Feng Chen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Corresponding author. (F.S.); (Y.Y.); (X.Z.); (W.T.)
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (F.S.); (Y.Y.); (X.Z.); (W.T.)
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Corresponding author. (F.S.); (Y.Y.); (X.Z.); (W.T.)
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Corresponding author. (F.S.); (Y.Y.); (X.Z.); (W.T.)
| |
Collapse
|
7
|
Lu M, Ward E, van Tartwijk FW, Kaminski CF. Advances in the study of organelle interactions and their role in neurodegenerative diseases enabled by super-resolution microscopy. Neurobiol Dis 2021; 159:105475. [PMID: 34390833 DOI: 10.1016/j.nbd.2021.105475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
From the first illustrations of neuronal morphology by Ramón y Cajal to the recent three-dimensional reconstruction of synaptic connections, the development of modern neuroscience has greatly benefited from breakthroughs in imaging technology. This also applies specifically to the study of neurodegenerative diseases. Much of the research into these diseases relies on the direct visualisation of intracellular structures and their dynamics in degenerating neural cells, which cannot be fully resolved by diffraction-limited microscopes. Progress in the field has therefore been closely linked to the development of super-resolution imaging methods. Their application has greatly advanced our understanding of disease mechanisms, ranging from the structural progression of protein aggregates to defects in organelle morphology. Recent super-resolution studies have specifically implicated the disruption of inter-organelle interactions in multiple neurodegenerative diseases. In this article, we describe some of the key super-resolution techniques that have contributed to this field. We then discuss work to visualise changes in the structure and dynamics of organelles and associated dysfunctions. Finally, we consider what future developments in imaging technology may further our knowledge of these processes.
Collapse
Affiliation(s)
- Meng Lu
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Ward
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens F Kaminski
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK.
| |
Collapse
|
8
|
Monti A, Bruckmann C, Blasi F, Ruvo M, Vitagliano L, Doti N. Amyloid-like Prep1 peptides exhibit reversible blue-green-red fluorescence in vitro and in living cells. Chem Commun (Camb) 2021; 57:3720-3723. [PMID: 33729264 DOI: 10.1039/d1cc01145f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PREP1-based peptides form amyloid-like aggregates endowed with an intrinsic blue-green-red fluorescence with an unusual sharp maximum at 520 nm upon excitation with visible light under physiological conditions. The peptide PREP1[117-132], whose sequence does not contain aromatic residues, presents a pH-dependent and reversible fluorescence, in line with its structural transition from β-sheet rich aggregates to α-helix structures. These findings further demonstrate that the non-canonical fluorescence exhibited by amyloids is an articulated phenomenon.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, Naples 80134, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Pizzarelli R, Pediconi N, Di Angelantonio S. Molecular Imaging of Tau Protein: New Insights and Future Directions. Front Mol Neurosci 2021; 13:586169. [PMID: 33384582 PMCID: PMC7769805 DOI: 10.3389/fnmol.2020.586169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein (MAPT) that is highly expressed in neurons and implicated in several cellular processes. Tau misfolding and self-aggregation give rise to proteinaceous deposits known as neuro-fibrillary tangles. Tau tangles play a key role in the genesis of a group of diseases commonly referred to as tauopathies; notably, these aggregates start to form decades before any clinical symptoms manifest. Advanced imaging methodologies have clarified important structural and functional aspects of tau and could have a role as diagnostic tools in clinical research. In the present review, recent progresses in tau imaging will be discussed. We will focus mainly on super-resolution imaging methods and the development of near-infrared fluorescent probes.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Natalia Pediconi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
10
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Investigating the Structure of Neurotoxic Protein Aggregates Inside Cells. Trends Cell Biol 2020; 30:951-966. [PMID: 32981805 DOI: 10.1016/j.tcb.2020.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases affect the lives of millions of people across the world, being particularly prevalent in the aging population. Despite huge research efforts, conclusive insights into the disease mechanisms are still lacking. Therefore, therapeutic strategies are limited to symptomatic treatments. A common histopathological hallmark of many neurodegenerative diseases is the presence of large pathognomonic protein aggregates, but their role in the disease pathology is unclear and subject to controversy. Here, we discuss imaging methods allowing investigation of these structures within their cellular environment: conventional electron microscopy (EM), super-resolution light microscopy (SR-LM), and cryo-electron tomography (cryo-ET). Multidisciplinary approaches are key for understanding neurodegenerative diseases and may contribute to the development of effective treatments. For simplicity, we focus on huntingtin aggregates, characteristic of Huntington's disease.
Collapse
|
12
|
Gera J, Paragi G. Fluorescence-Labeled Amyloid Beta Monomer: A Molecular Dynamical Study. Molecules 2020; 25:molecules25153524. [PMID: 32752239 PMCID: PMC7435871 DOI: 10.3390/molecules25153524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022] Open
Abstract
The aggregation process of the Amyloidβ (Aβ) peptide is one of the central questions in Alzheimers’s research. Fluorescence-labeled single-molecule detection is a novel technique concerning the early stage investigation of Aβ aggregation, where the labeling dyes are covalently bound to the Aβ monomer. As the influence of the dye on the conformational space of the Aβ monomer can be significant, its effect on the seeding process is an open question. The applied fluorescent molecule continuously switches between an active (ON) and an inactive (OFF) state, where the latter supports an extra rotational restriction at many commercially available dyes. However, only a few theoretical studies simulated the Aβ monomer in the presence of a dye and none of them considered the difference between the ON and the OFF states. Therefore, we examined the impact of a selected fluorescence dye (Alexa 568) on the conformational space of the monomeric Aβ(1–42) peptide in its ON and OFF state by replica exchange molecular dynamic simulations. Investigations on secondary structure elements as well as dye-peptide contact analysis for the monomers are presented. Experimental and theoretical NMR shifts were contrasted to qualify the calculation protocol and theoretical values of the labeled and the non-labeled peptide were also compared. We found that the first five residues have higher helical propensity in the presence of the dye, and electrostatic properties could strongly affect the connection between the dye and the peptide parts.
Collapse
Affiliation(s)
- János Gera
- Department of Medical Chemistry, University of Szeged, H-6720 Dóm square 8, 6720 Szeged, Hungary;
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, H-6720 Dóm square 8, 6720 Szeged, Hungary
- Institute of Physics, University of Pecs, H-7624 Ifjusag utja 6, 7624 Pecs, Hungary
- Correspondence: or ; Tel.: +36-62-544-4593
| |
Collapse
|