1
|
Ait Yous M, Agounad S, Elbaz S. Detection, identification and removing of artifacts from sEMG signals: Current studies and future challenges. Comput Biol Med 2025; 186:109651. [PMID: 39793350 DOI: 10.1016/j.compbiomed.2025.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Surface electromyography (sEMG), a non-invasive technique, offers the ability to identify insights into the activities of muscles in the form of electrical pulses. During the process of recording, the sEMG signals frequently become contaminated by a multitude of different artifacts, the origin of which may be attributed to numerous sources. These artifacts affect the reliability and accuracy of the pure sEMG activity, and subsequently reduce the quality of analysis and interpretation. This can lead to a misinterpretation of sEMG signals, incorrect diagnostic, or a false decision in the case of human-machine interfaces (HMI), etc. Currently, several approaches have been developed to remove or reduce the effect of artifacts on the sEMG activity. In this paper, a comprehensive review of the current studies dealing with identification, detection, and removal of artifacts from sEMG signals is proposed. In addition, this study presents different features used to characterize the artifacts from that of the clean sEMG recordings. Finally, in order to improve the quality of denoising methods, the associated challenges of detection and artifact removal approaches are discussed to be addressed carefully in the future works.
Collapse
Affiliation(s)
- Mohamed Ait Yous
- Laboratory of Metrology and Information Processing, Physics Department, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Said Agounad
- Laboratory of Metrology and Information Processing, Physics Department, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Siham Elbaz
- Laboratory of Metrology and Information Processing, Physics Department, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
2
|
Negi PCBS, Pandey SS, Sharma S, Sharma N. Hybrid attention-CNN model for classification of gait abnormalities using EMG scalogram images. J Med Eng Technol 2024; 48:239-252. [PMID: 39936825 DOI: 10.1080/03091902.2025.2462310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.
Collapse
Affiliation(s)
- Pranshu C B S Negi
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - S S Pandey
- Department of Orthopaedics, Institute of Medical Sciences (Banaras Hindu University), Varanasi, India
| | - Shiru Sharma
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
3
|
Elbasiouny SM. The neurophysiology of sensorimotor prosthetic control. BMC Biomed Eng 2024; 6:9. [PMID: 39350271 PMCID: PMC11443900 DOI: 10.1186/s42490-024-00084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/31/2024] [Indexed: 10/04/2024] Open
Abstract
Movement is a central behavior of daily living; thus lost or compromised movement due to disease, injury, or amputation causes enormous loss of productivity and quality of life. While prosthetics have evolved enormously over the years, restoring natural sensorimotor (SM) control via a prosthesis is a difficult problem which neuroengineering has yet to solve. With a focus on upper limb prosthetics, this perspective article discusses the neurophysiology of motor control under healthy conditions and after amputation, the development of upper limb prostheses from early generations to current state-of-the art sensorimotor neuroprostheses, and how postinjury changes could complicate prosthetic control. Current challenges and future development of smart sensorimotor neuroprostheses are also discussed.
Collapse
Affiliation(s)
- Sherif M Elbasiouny
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH, USA.
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, USA.
| |
Collapse
|
4
|
Mesin L. Nonlinear spatio-temporal filter to reduce crosstalk in bipolar electromyogram. J Neural Eng 2024; 21:016021. [PMID: 38277703 DOI: 10.1088/1741-2552/ad2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Objective.The wide detection volume of surface electromyogram (EMG) makes it prone to crosstalk, i.e. the signal from other muscles than the target one. Removing this perturbation from bipolar recordings is an important open problem for many applications.Approach.An innovative nonlinear spatio-temporal filter is developed to estimate the EMG generated by the target muscle by processing noisy signals from two bipolar channels, placed over the target and the crosstalk muscle, respectively. The filter is trained on some calibration data and then can be applied on new signals. Tests are provided in simulations (considering different thicknesses of the subcutaneous tissue, inter-electrode distances, locations of the EMG channels, force levels) and experiments (from pronator teres and flexor carpi radialis of 8 healthy subjects).Main results.The proposed filter allows to reduce the effect of crosstalk in all investigated conditions, with a statistically significant reduction of its root mean squared of about 20%, both in simulated and experimental data. Its performances are also superior to those of a blind source separation method applied to the same data.Significance.The proposed filter is simple to be applied and feasible in applications in which single bipolar channels are placed over the muscles of interest. It can be useful in many fields, such as in gait analysis, tests of myoelectric fatigue, rehabilitation with EMG biofeedback, clinical studies, prosthesis control.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| |
Collapse
|
5
|
Magbonde A, Quaine F, Rivet B. Comparison of Blind Source Separation Methods to Surface Electromyogram for Extensor Muscles of the Index and Little Fingers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3615-3618. [PMID: 36086613 DOI: 10.1109/embc48229.2022.9870902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crosstalk is the result of the propagation of muscle electrical signals on surface electromyogram channels simultaneously. The objective of this paper is to study the behavior of three blind source separation (BSS) methods for crosstalk reduction during finger extensor muscle contractions: FastICA, joint diagonalization of covariance matrices and optimal filtering. These methods have been tested on artificial mixtures defined by a temporal sum of the real signals from isolated contraction of two independent biomechanical muscles for the extension of the index and little finger. Artificial mixtures display a ground truth for comparison between the methods. The separation was better using the optimal filtering compared to the other two methods. The optimal filtering have then be tested on real mixtures recorded during a simultaneous contraction of the two muscles. The results are less satisfactory but open doors to new perspectives.
Collapse
|
6
|
Ma S, Chen C, Zhao J, Han D, Sheng X, Farina D, Zhu X. Analytical Modelling of Surface EMG Signals Generated by Curvilinear Fibers with Approximate Conductivity Tensor. IEEE Trans Biomed Eng 2021; 69:1052-1062. [PMID: 34529557 DOI: 10.1109/tbme.2021.3112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Mathematical modelling of surface electromyographic (EMG) signals has been proven a valuable tool to interpret experimental data and to validate signal processing techniques. Most analytical EMG models only consider muscle fibers with specific and fixed arrangements. However, the fiber orientation and curvature may change along the fiber paths and may differ from fiber to fiber. Here we propose a subject-specific EMG model that simulates the fiber trajectories in muscles of the upper arm and analytically derives the action potentials assuming an approximate conductivity tensor. METHODS Magnetic Resonance (MR) images were acquired to identify and generate muscle fiber paths and to determine the muscle locations in a cylindrical volume conductor. While the propagation of the action potentials followed the identified curvilinear fiber paths, the conductivity tensor was not adapted to the fiber direction but approximated along the longitudinal axis of the cylindrical volume conductor. Single fiber action potentials (SFAPs) were computed by simulating the generation, propagation, and extinction of membrane current sources. To validate the assumption of the approximate conductivity tensor, two numerical models were implemented for comparison with the analytical solution. The first numerical model reproduced the analytical model and therefore included an approximation for the conductivity tensor. The second numerical model included the exact conductivity tensor derived from the fiber curvatures. RESULTS The motor unit action potentials generated by the proposed analytical model and the two numerical models were highly similar (cross-correlation >0.98, normalized root mean square error, nRMSE 0.04, relative error in the median frequency of the simulated waveforms of approximately 3%). The proposed analytical model was also evaluated by comparing simulated and experimentally recorded compound muscle action potentials (CMAPs). The CMAPs simulated with the proposed model better matched the experimental data (cross-correlation >0.90 and nRMSE <0.25 for the majority of the channels) than a model with straight fibers. Finally, the proposed model was representatively used to test the accuracy of an EMG decomposition algorithm, providing a realistic benchmark. CONCLUSIONS AND SIGNIFICANCE The proposed analytical model generates action potentials that reflect the spatial distributions of muscle fibers with curvilinear paths. The simulated signals are more realistic than signals generated by analytical models with straight fibers and can therefore be applied for testing EMG processing algorithms with a trade-off between simulation accuracy and computational speed.
Collapse
|
7
|
Mesin L. Inverse modelling to reduce crosstalk in high density surface electromyogram. Med Eng Phys 2020; 85:55-62. [PMID: 33081964 DOI: 10.1016/j.medengphy.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Surface electromyogram (EMG) has a relatively large detection volume, so that it could include contributions both from the target muscle of interest and from nearby regions (i.e., crosstalk). This interference can prevent a correct interpretation of the activity of the target muscle, limiting the use of surface EMG in many fields. To counteract the problem, selective spatial filters have been proposed, but they reduce the representativeness of the data from the target muscle. A better solution would be to discard only crosstalk from the signal recorded in monopolar configuration (thus, keeping most information on the target muscle). An inverse modelling approach is here proposed to estimate the contributions of different muscles, in order to focus on the one of interest. The method is tested with simulated monopolar EMGs from superficial nearby muscles contracted at different force levels (either including or not model perturbations and noise), showing statistically significant improvements in information extraction from the data. The median over the entire dataset of the mean squared error in representing the EMG of the muscle under the detection electrode was reduced from 11.2% to 4.4% of the signal energy (5.3% if noisy data were processed); the median bias in conduction velocity estimation (from 3 monopolar channels aligned to the muscle fibres) was decreased from 2.12 to 0.72 m/s (1.1 m/s if noisy data were processed); the median absolute error in the estimation of median frequency was reduced from 1.02 to 0.67 Hz in noise free conditions and from 1.52 to 1.45 Hz considering noisy data.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
8
|
Crosstalk in surface electromyogram: literature review and some insights. Phys Eng Sci Med 2020; 43:481-492. [DOI: 10.1007/s13246-020-00868-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
|
9
|
Schlink BR, Ferris DP. A Lower Limb Phantom for Simulation and Assessment of Electromyography Technology. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2378-2385. [DOI: 10.1109/tnsre.2019.2944297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019; 16:143. [PMID: 31744520 PMCID: PMC6862792 DOI: 10.1186/s12984-019-0614-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is extensively used in stroke motor rehabilitation. How it promotes motor recovery remains only partially understood. NMES could change muscular properties, produce altered sensory inputs, and modulate fluctuations of cortical activities; but the potential contribution from cortico-muscular couplings during NMES synchronized with dynamic movement has rarely been discussed. Method We investigated cortico-muscular interactions during passive, active, and NMES rhythmic pedaling in healthy subjects and chronic stroke survivors. EEG (128 channels), EMG (4 unilateral lower limb muscles) and movement parameters were measured during 3 sessions of constant-speed pedaling. Sensory-level NMES (20 mA) was applied to the muscles, and cyclic stimulation patterns were synchronized with the EMG during pedaling cycles. Adaptive mixture independent component analysis was utilized to determine the movement-related electro-cortical sources and the source dipole clusters. A directed cortico-muscular coupling analysis was conducted between representative source clusters and the EMGs using generalized partial directed coherence (GPDC). The bidirectional GPDC was compared across muscles and pedaling sessions for post-stroke and healthy subjects. Results Directed cortico-muscular coupling of NMES cycling was more similar to that of active pedaling than to that of passive pedaling for the tested muscles. For healthy subjects, sensory-level NMES could modulate GPDC of both ascending and descending pathways. Whereas for stroke survivors, NMES could modulate GPDC of only the ascending pathways. Conclusions By clarifying how NMES influences neuromuscular control during pedaling in healthy and post-stroke subjects, our results indicate the potential limitation of sensory-level NMES in promoting sensorimotor recovery in chronic stroke survivors.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Cheong Leung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.,The KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA.,TIRR Memorial Hermann Research Center, Houston, 77030, TX, USA
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Association of anthropometric parameters with amplitude and crosstalk of mechanomyographic signals during forearm flexion, pronation and supination torque tasks. Sci Rep 2019; 9:16166. [PMID: 31700129 PMCID: PMC6838124 DOI: 10.1038/s41598-019-52536-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/21/2019] [Indexed: 11/11/2022] Open
Abstract
This study aimed to quantify the association of four anthropometric parameters of the human arm, namely, the arm circumference (CA), arm length (LA), skinfold thickness (ST) and inter-sensor distance (ISD), with amplitude (RMS) and crosstalk (CT) of mechanomyography (MMG) signals. Twenty-five young, healthy, male participants were recruited to perform forearm flexion, pronation and supination torque tasks. Three accelerometers were employed to record the MMG signals from the biceps brachii (BB), brachialis (BRA) and brachioradialis (BRD) at 80% maximal voluntary contraction (MVC). Signal RMS was used to quantify the amplitude of the MMG signals from a muscle, and cross-correlation coefficients were used to quantify the magnitude of the CT among muscle pairs (BB & BRA, BRA & BRD, and BB & BRD). For all investigated muscles and pairs, RMS and CT showed negligible to low negative correlations with CA, LA and ISD (r = −0.0001–−0.4611), and negligible to moderate positive correlations with ST (r = 0.004–0.511). However, almost all of these correlations were statistically insignificant (p > 0.05). These findings suggest that RMS and CT values for the elbow flexor muscles recorded and quantified using accelerometers appear invariant to anthropometric parameters.
Collapse
|
12
|
Merletti R, Muceli S. Tutorial. Surface EMG detection in space and time: Best practices. J Electromyogr Kinesiol 2019; 49:102363. [PMID: 31665683 DOI: 10.1016/j.jelekin.2019.102363] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/26/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022] Open
Abstract
This tutorial is aimed to non-engineers using, or planning to use, surface electromyography (sEMG) as an assessment tool in the prevention, monitoring and rehabilitation fields. Its first purpose is to address the issues related to the origin and nature of the signal and to its detection (electrode size, distance, location) by one-dimensional (bipolar and linear arrays) and two-dimensional (grids) electrode systems while avoiding advanced mathematical, physical or physiological issues. Its second purpose is to outline best practices and provide general guidelines for proper signal detection. Issues related to the electrode-skin interface, signal conditioning and interpretation will be discussed in subsequent tutorials.
Collapse
Affiliation(s)
- R Merletti
- LISiN, Dept. of Electronics and Telecommunications, Politecnico di Torino, Italy.
| | - S Muceli
- Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Imperial College, London, UK.
| |
Collapse
|
13
|
Separation of interference surface electromyogram into propagating and non-propagating components. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Talib I, Sundaraj K, Lam CK, Hussain J, Ali MA. A review on crosstalk in myographic signals. Eur J Appl Physiol 2018; 119:9-28. [PMID: 30242464 DOI: 10.1007/s00421-018-3994-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Crosstalk in myographic signals is a major hindrance to the understanding of local information related to individual muscle function. This review aims to analyse the problem of crosstalk in electromyography and mechanomyography. METHODS An initial search of the SCOPUS database using an appropriate set of keywords yielded 290 studies, and 59 potential studies were selected after all the records were screened using the eligibility criteria. This review on crosstalk revealed that signal contamination due to crosstalk remains a major challenge in the application of surface myography techniques. Various methods have been employed in previous studies to identify, quantify and reduce crosstalk in surface myographic signals. RESULTS Although correlation-based methods for crosstalk quantification are easy to use, there is a possibility that co-contraction could be interpreted as crosstalk. High-definition EMG has emerged as a new technique that has been successfully applied to reduce crosstalk. CONCLUSIONS The phenomenon of crosstalk needs to be investigated carefully because it depends on many factors related to muscle task and physiology. This review article not only provides a good summary of the literature on crosstalk in myographic signals but also discusses new directions related to techniques for crosstalk identification, quantification and reduction. The review also provides insights into muscle-related issues that impact crosstalk in myographic signals.
Collapse
Affiliation(s)
- Irsa Talib
- School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Kenneth Sundaraj
- Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Malaysia
| | - Chee Kiang Lam
- School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Jawad Hussain
- Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Malaysia
| | - Md Asraf Ali
- Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|