1
|
Alasfour A, Gilja V. Consistent spectro-spatial features of human ECoG successfully decode naturalistic behavioral states. Front Hum Neurosci 2024; 18:1388267. [PMID: 38873653 PMCID: PMC11169785 DOI: 10.3389/fnhum.2024.1388267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Objective Understanding the neural correlates of naturalistic behavior is critical for extending and confirming the results obtained from trial-based experiments and designing generalizable brain-computer interfaces that can operate outside laboratory environments. In this study, we aimed to pinpoint consistent spectro-spatial features of neural activity in humans that can discriminate between naturalistic behavioral states. Approach We analyzed data from five participants using electrocorticography (ECoG) with broad spatial coverage. Spontaneous and naturalistic behaviors such as "Talking" and "Watching TV" were labeled from manually annotated videos. Linear discriminant analysis (LDA) was used to classify the two behavioral states. The parameters learned from the LDA were then used to determine whether the neural signatures driving classification performance are consistent across the participants. Main results Spectro-spatial feature values were consistently discriminative between the two labeled behavioral states across participants. Mainly, θ, α, and low and high γ in the postcentral gyrus, precentral gyrus, and temporal lobe showed significant classification performance and feature consistency across participants. Subject-specific performance exceeded 70%. Combining neural activity from multiple cortical regions generally does not improve decoding performance, suggesting that information regarding the behavioral state is non-additive as a function of the cortical region. Significance To the best of our knowledge, this is the first attempt to identify specific spectro-spatial neural correlates that consistently decode naturalistic and active behavioral states. The aim of this work is to serve as an initial starting point for developing brain-computer interfaces that can be generalized in a realistic setting and to further our understanding of the neural correlates of naturalistic behavior in humans.
Collapse
Affiliation(s)
- Abdulwahab Alasfour
- Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| |
Collapse
|
2
|
Alasfour A, Gabriel P, Jiang X, Shamie I, Melloni L, Thesen T, Dugan P, Friedman D, Doyle W, Devinsky O, Gonda D, Sattar S, Wang S, Halgren E, Gilja V. Spatiotemporal dynamics of human high gamma discriminate naturalistic behavioral states. PLoS Comput Biol 2022; 18:e1010401. [PMID: 35939509 PMCID: PMC9387937 DOI: 10.1371/journal.pcbi.1010401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
In analyzing the neural correlates of naturalistic and unstructured behaviors, features of neural activity that are ignored in a trial-based experimental paradigm can be more fully studied and investigated. Here, we analyze neural activity from two patients using electrocorticography (ECoG) and stereo-electroencephalography (sEEG) recordings, and reveal that multiple neural signal characteristics exist that discriminate between unstructured and naturalistic behavioral states such as “engaging in dialogue” and “using electronics”. Using the high gamma amplitude as an estimate of neuronal firing rate, we demonstrate that behavioral states in a naturalistic setting are discriminable based on long-term mean shifts, variance shifts, and differences in the specific neural activity’s covariance structure. Both the rapid and slow changes in high gamma band activity separate unstructured behavioral states. We also use Gaussian process factor analysis (GPFA) to show the existence of salient spatiotemporal features with variable smoothness in time. Further, we demonstrate that both temporally smooth and stochastic spatiotemporal activity can be used to differentiate unstructured behavioral states. This is the first attempt to elucidate how different neural signal features contain information about behavioral states collected outside the conventional experimental paradigm.
Collapse
Affiliation(s)
- Abdulwahab Alasfour
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
- * E-mail:
| | - Paolo Gabriel
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
| | - Xi Jiang
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Isaac Shamie
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Lucia Melloni
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, Texas, United States of America
| | - Patricia Dugan
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Daniel Friedman
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Werner Doyle
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Orin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - David Gonda
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Shifteh Sattar
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Sonya Wang
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric Halgren
- Department of Neurosciences, UC San Diego, San Diego, California, United States of America
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, UC San Diego, San Diego, California, United States of America
| |
Collapse
|
3
|
Peterson SM, Singh SH, Dichter B, Scheid M, Rao RPN, Brunton BW. AJILE12: Long-term naturalistic human intracranial neural recordings and pose. Sci Data 2022; 9:184. [PMID: 35449141 PMCID: PMC9023453 DOI: 10.1038/s41597-022-01280-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Understanding the neural basis of human movement in naturalistic scenarios is critical for expanding neuroscience research beyond constrained laboratory paradigms. Here, we describe our Annotated Joints in Long-term Electrocorticography for 12 human participants (AJILE12) dataset, the largest human neurobehavioral dataset that is publicly available; the dataset was recorded opportunistically during passive clinical epilepsy monitoring. AJILE12 includes synchronized intracranial neural recordings and upper body pose trajectories across 55 semi-continuous days of naturalistic movements, along with relevant metadata, including thousands of wrist movement events and annotated behavioral states. Neural recordings are available at 500 Hz from at least 64 electrodes per participant, for a total of 1280 hours. Pose trajectories at 9 upper-body keypoints were estimated from 118 million video frames. To facilitate data exploration and reuse, we have shared AJILE12 on The DANDI Archive in the Neurodata Without Borders (NWB) data standard and developed a browser-based dashboard.
Collapse
Affiliation(s)
- Steven M Peterson
- University of Washington, Department of Biology, Seattle, 98195, USA.,University of Washington, eScience Institute, Seattle, USA
| | - Satpreet H Singh
- University of Washington, Department of Electrical and Computer Engineering, Seattle, USA
| | | | | | - Rajesh P N Rao
- University of Washington, Paul G. Allen School of Computer Science and Engineering, Seattle, USA.,University of Washington, Center for Neurotechnology, Seattle, USA
| | - Bingni W Brunton
- University of Washington, Department of Biology, Seattle, 98195, USA. .,University of Washington, eScience Institute, Seattle, USA.
| |
Collapse
|
4
|
Scullen T, Teja N, Song SH, Couldwell M, Carr C, Mathkour M, Lee DJ, Tubbs RS, Dallapiazza RF. Use of stereoelectroencephalography beyond epilepsy: a systematic review. World Neurosurg 2021; 155:96-108. [PMID: 34217862 DOI: 10.1016/j.wneu.2021.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Tyler Scullen
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nikhil Teja
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire, USA
| | - Seo Ho Song
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire, USA
| | - Mitchell Couldwell
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Chris Carr
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Mansour Mathkour
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Darrin J Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Shane Tubbs
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA; Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana, USA; Department of Anatomical Sciences, St. George's University, Grenada
| | - Robert F Dallapiazza
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
5
|
Peterson SM, Singh SH, Wang NXR, Rao RPN, Brunton BW. Behavioral and Neural Variability of Naturalistic Arm Movements. eNeuro 2021; 8:ENEURO.0007-21.2021. [PMID: 34031100 PMCID: PMC8225404 DOI: 10.1523/eneuro.0007-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022] Open
Abstract
Motor behaviors are central to many functions and dysfunctions of the brain, and understanding their neural basis has consequently been a major focus in neuroscience. However, most studies of motor behaviors have been restricted to artificial, repetitive paradigms, far removed from natural movements performed "in the wild." Here, we leveraged recent advances in machine learning and computer vision to analyze intracranial recordings from 12 human subjects during thousands of spontaneous, unstructured arm reach movements, observed over several days for each subject. These naturalistic movements elicited cortical spectral power patterns consistent with findings from controlled paradigms, but with considerable neural variability across subjects and events. We modeled interevent variability using 10 behavioral and environmental features; the most important features explaining this variability were reach angle and day of recording. Our work is among the first studies connecting behavioral and neural variability across cortex in humans during unstructured movements and contributes to our understanding of long-term naturalistic behavior.
Collapse
Affiliation(s)
- Steven M Peterson
- Department of Biology, University of Washington, Seattle, Washington 98195
- eScience Institute, University of Washington, Seattle, Washington 98195
| | - Satpreet H Singh
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
| | - Nancy X R Wang
- IBM Research, San Jose, California 95120
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Rajesh P N Rao
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
- Center for Neurotechnology, University of Washington, Seattle, Washington 98195
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington 98195
- eScience Institute, University of Washington, Seattle, Washington 98195
| |
Collapse
|
6
|
Singh SH, Peterson SM, Rao RPN, Brunton BW. Mining naturalistic human behaviors in long-term video and neural recordings. J Neurosci Methods 2021; 358:109199. [PMID: 33910024 DOI: 10.1016/j.jneumeth.2021.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Recent technological advances in brain recording and machine learning algorithms are enabling the study of neural activity underlying spontaneous human behaviors, beyond the confines of cued, repeated trials. However, analyzing such unstructured data lacking a priori experimental design remains a significant challenge, especially when the data is multi-modal and long-term. NEW METHOD Here we describe an automated, behavior-first approach for analyzing simultaneously recorded long-term, naturalistic electrocorticography (ECoG) and behavior video data. We identify and characterize spontaneous human upper-limb movements by combining computer vision, discrete latent-variable modeling, and string pattern-matching on the video. RESULTS Our pipeline discovers and annotates over 40,000 instances of naturalistic arm movements in long term (7-9 day) behavioral videos, across 12 subjects. Analysis of the simultaneously recorded brain data reveals neural signatures of movement that corroborate previous findings. Our pipeline produces large training datasets for brain-computer interfacing applications, and we show decoding results from a movement initiation detection task. COMPARISON WITH EXISTING METHODS Spontaneous movements capture real-world neural and behavior variability that is missing from traditional cued tasks. Building beyond window-based movement detection metrics, our unsupervised discretization scheme produces a queryable pose representation, allowing localization of movements with finer temporal resolution. CONCLUSIONS Our work addresses the unique analytic challenges of studying naturalistic human behaviors and contributes methods that may generalize to other neural recording modalities beyond ECoG. We publish our curated dataset and believe that it will be a valuable resource for future studies of naturalistic movements.
Collapse
Affiliation(s)
- Satpreet H Singh
- Department of Electrical and Computer Engineering, University of Washington, Seattle, USA
| | - Steven M Peterson
- Department of Biology, University of Washington, Seattle, USA; eScience Institute, University of Washington, Seattle, USA
| | - Rajesh P N Rao
- Department of Electrical and Computer Engineering, University of Washington, Seattle, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA; Center for Neurotechnology, University of Washington, Seattle, USA; University of Washington Institute for Neuroengineering, Seattle, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, USA; eScience Institute, University of Washington, Seattle, USA; University of Washington Institute for Neuroengineering, Seattle, USA.
| |
Collapse
|
7
|
Herff C, Krusienski DJ, Kubben P. The Potential of Stereotactic-EEG for Brain-Computer Interfaces: Current Progress and Future Directions. Front Neurosci 2020; 14:123. [PMID: 32174810 PMCID: PMC7056827 DOI: 10.3389/fnins.2020.00123] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Stereotactic electroencephalogaphy (sEEG) utilizes localized, penetrating depth electrodes to measure electrophysiological brain activity. It is most commonly used in the identification of epileptogenic zones in cases of refractory epilepsy. The implanted electrodes generally provide a sparse sampling of a unique set of brain regions including deeper brain structures such as hippocampus, amygdala and insula that cannot be captured by superficial measurement modalities such as electrocorticography (ECoG). Despite the overlapping clinical application and recent progress in decoding of ECoG for Brain-Computer Interfaces (BCIs), sEEG has thus far received comparatively little attention for BCI decoding. Additionally, the success of the related deep-brain stimulation (DBS) implants bodes well for the potential for chronic sEEG applications. This article provides an overview of sEEG technology, BCI-related research, and prospective future directions of sEEG for long-term BCI applications.
Collapse
Affiliation(s)
- Christian Herff
- Department of Neurosurgery, School of Mental Health and Neurosciences, Maastricht University, Maastricht, Netherlands
| | - Dean J Krusienski
- ASPEN Lab, Biomedical Engineering Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Pieter Kubben
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|