1
|
Wegert L, Ziolkowski M, Kalla T, Lange I, Haueisen J, Hunold A. Activation thresholds for electrical phrenic nerve stimulation at the neck: evaluation of stimulation pulse parameters in a simulation study. J Neural Eng 2024; 21:066012. [PMID: 39555768 DOI: 10.1088/1741-2552/ad8c84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
Objective.Phrenic nerve stimulation reduces ventilator-induced-diaphragmatic-dysfunction, which is a potential complication of mechanical ventilation. Electromagnetic simulations provide valuable information about the effects of the stimulation and are used to determine appropriate stimulation parameters and evaluate possible co-activation.Approach.Using a multiscale approach, we built a novel detailed anatomical model of the neck and the phrenic nerve. The model consisted of a macroscale volume conduction model of the neck with 13 tissues, a mesoscale volume conduction model of the phrenic nerve with three tissues, and a microscale biophysiological model of axons with diameters ranging from 5 to 14 µm based on the McIntyre-Richardson-Grill-model for myelinated axons. This multiscale model was used to quantify activation thresholds of phrenic nerve fibers using different stimulation pulse parameters (pulse width, interphase delay, asymmetry of biphasic pulses, pulse polarity, and rise time) during non-invasive electrical stimulation. Electric field strength was used to evaluate co-activation of the other nerves in the neck.Main results.For monophasic pulses with a pulse width of 150 µs, the activation threshold depended on the fiber diameter and ranged from 20 to 156 mA, with highest activation threshold for the smallest fiber diameter. The relationship was approximated using a power fit functionx-3. Biphasic (symmetric) pulses increased the activation threshold by 25 to 30 %. The use of asymmetric biphasic pulses or an interphase delay lowered the threshold close to the monophasic threshold. Possible co-activated nerves were the more superficial nerves and included the transverse cervical nerve, the supraclavicular nerve, the great auricular nerve, the cervical plexus, the brachial plexus, and the long thoracic nerve.Significance.Our multiscale model and electromagnetic simulations provided insight into phrenic nerve activation and possible co-activation by non-invasive electrical stimulation and provided guidance on the use of stimulation pulse types with minimal activation threshold.
Collapse
Affiliation(s)
- Laureen Wegert
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Marek Ziolkowski
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Tim Kalla
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Irene Lange
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Alexander Hunold
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
- neuroConn GmbH, Ilmenau, Germany
| |
Collapse
|
2
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. Front Neurosci 2024; 18:1387098. [PMID: 39035779 PMCID: PMC11258030 DOI: 10.3389/fnins.2024.1387098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate anesthetic state-dependent effective connectivity of neurons in rat visual cortex in vivo. Methods Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. Results Microstimulation caused early (<10 ms) increase followed by prolonged (11-100 ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1 mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. The number of network motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. Conclusion The results illuminate the impact of anesthesia on functional integrity of local cortical circuits affecting the state of consciousness.
Collapse
Affiliation(s)
- Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591664. [PMID: 38746366 PMCID: PMC11092428 DOI: 10.1101/2024.04.29.591664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate the state-dependent effective connectivity of neurons in rat visual cortex in vivo. Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Microstimulation caused early (<10ms) increase followed by prolonged (11-100ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. The number of motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. The results illuminate the impact of anesthesia on functional integrity of local circuits affecting the state of consciousness.
Collapse
|
4
|
Burton A, Wang Z, Song D, Tran S, Hanna J, Ahmad D, Bakall J, Clausen D, Anderson J, Peralta R, Sandepudi K, Benedetto A, Yang E, Basrai D, Miller LE, Tresch MC, Gutruf P. Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation. Nat Commun 2023; 14:7887. [PMID: 38036552 PMCID: PMC10689769 DOI: 10.1038/s41467-023-43669-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Electrical stimulation of the neuromuscular system holds promise for both scientific and therapeutic biomedical applications. Supplying and maintaining the power necessary to drive stimulation chronically is a fundamental challenge in these applications, especially when high voltages or currents are required. Wireless systems, in which energy is supplied through near field power transfer, could eliminate complications caused by battery packs or external connections, but currently do not provide the harvested power and voltages required for applications such as muscle stimulation. Here, we introduce a passive resonator optimized power transfer design that overcomes these limitations, enabling voltage compliances of ± 20 V and power over 300 mW at device volumes of 0.2 cm2, thereby improving power transfer 500% over previous systems. We show that this improved performance enables multichannel, biphasic, current-controlled operation at clinically relevant voltage and current ranges with digital control and telemetry in freely behaving animals. Preliminary chronic results indicate that implanted devices remain operational over 6 weeks in both intact and spinal cord injured rats and are capable of producing fine control of spinal and muscle stimulation.
Collapse
Affiliation(s)
- Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhong Wang
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Dan Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sam Tran
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Dhrubo Ahmad
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jakob Bakall
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - David Clausen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jerry Anderson
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberto Peralta
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Kirtana Sandepudi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alex Benedetto
- Interdepartmental Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Ethan Yang
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Diya Basrai
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Interdepartmental Neuroscience, Northwestern University, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew C Tresch
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Shirley Ryan AbilityLab, Chicago, IL, 60611, USA.
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
- Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Hu Y, Feng Z, Zheng L, Ye X. Interactions between cathodic- and anodic-pulses during high-frequency stimulations with the monophasic-pulses alternating in polarity at axons-experiment and simulation studies. J Neural Eng 2023; 20:056021. [PMID: 37703869 DOI: 10.1088/1741-2552/acf959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Background. Electrical neuromodulation therapies commonly utilize high-frequency stimulations (HFS) of biphasic-pulses to treat neurological disorders. The biphasic pulse consists of a leading cathodic-phase to activate neurons and a lagging anodic-phase to balance electrical charges. Because both monophasic cathodic- and anodic-pulses can depolarize neuronal membranes, splitting biphasic-pulses into alternate cathodic- and anodic-pulses could be a feasible strategy to improve stimulation efficiency.Objective. We speculated that neurons in the volume initially activated by both polarity pulses could change to be activated only by anodic-pulses during sustained HFS of alternate monophasic-pulses. To verify the hypothesis, we investigated the interactions of the monophasic pulses during HFS and revealed possible underlying mechanisms.Approach. Different types of pulse stimulations were applied at the alvear fibers (i.e. the axons of CA1 pyramidal neurons) to antidromically activate the neuronal cell bodies in the hippocampal CA1 region of anesthetized ratsin-vivo. Sequences of antidromic HFS (A-HFS) were applied with alternate monophasic-pulses or biphasic-pulses. The pulse frequency in the A-HFS sequences was 50 or 100 Hz. The A-HFS duration was 120 s. The amplitude of antidromically-evoked population spike was measured to evaluate the neuronal firing induced by each pulse. A computational model of axon was used to explore the possible mechanisms of neuronal modulations. The changes of model variables during sustained A-HFS were analyzed.Main results. In rat experiments, with a same pulse intensity, the activation volume of a cathodic-pulse was greater than that of an anodic-pulse. In paired-pulse tests, a preceding cathodic-pulse was able to prevent a following anodic-pulse from activating neurons due to refractory period. This indicated that the activation volume of a cathodic-pulse covered that of an anodic-pulse. However, during sustained A-HFS of alternate monophasic-pulses, the anodic-pulses were able to prevail over the cathodic-pulses in activating neurons in the overlapped activation volume. Model simulation results show the mechanisms of the activation failures of cathodic-pulses. They include the excessive membrane depolarization caused by an accumulation of potassium ions, the obstacle of hyperpolarization in the conduction pathway and the interactions from anodic-pulses.Significance. The study firstly showed the domination of anodic-pulses over cathodic-pulses in their competitions to activate neurons during sustained HFS. The finding provides new clues for designing HFS paradigms to improve the efficiency of neuromodulation therapies.
Collapse
Affiliation(s)
- Yifan Hu
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhouyan Feng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lvpiao Zheng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangyu Ye
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
7
|
Stieger KC, Eles JR, Ludwig K, Kozai TDY. Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. J Neural Eng 2022; 19. [PMID: 35263736 DOI: 10.1088/1741-2552/ac5bf5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Neural prosthetics often use intracortical microstimulation (ICMS) for sensory restoration. To restore natural and functional feedback, we must first understand how stimulation parameters influence the recruitment of neural populations. ICMS waveform asymmetry modulates the spatial activation of neurons around an electrode at 10 Hz; however, it is unclear how asymmetry may differentially modulate population activity at frequencies typically employed in the clinic (e.g. 100 Hz). We hypothesized that stimulation waveform asymmetry would differentially modulate preferential activation of certain neural populations, and the differential population activity would be frequency-dependent. APPROACH We quantified how asymmetric stimulation waveforms delivered at 10 Hz or 100 Hz for 30s modulated spatiotemporal activity of cortical layer II/III pyramidal neurons using in vivo two-photon and mesoscale calcium imaging in anesthetized mice. Asymmetry is defined in terms of the ratio of the duration of the leading phase to the duration of the return phase of charge-balanced cathodal- and anodal-first waveforms (i.e. longer leading phase relative to return has larger asymmetry). MAIN RESULTS Neurons within 40-60µm of the electrode display stable stimulation-induced activity indicative of direct activation, which was independent of waveform asymmetry. The stability of 72% of activated neurons and the preferential activation of 20-90 % of neurons depended on waveform asymmetry. Additionally, this asymmetry-dependent activation of different neural populations was associated with differential progression of population activity. Specifically, neural activity tended to increase over time during 10 hz stimulation for some waveforms, whereas activity remained at the same level throughout stimulation for other waveforms. During 100 Hz stimulation, neural activity decreased over time for all waveforms, but decreased more for the waveforms that resulted in increasing neural activity during 10 Hz stimulation. SIGNIFICANCE These data demonstrate that at frequencies commonly used for sensory restoration, stimulation waveform alters the pattern of activation of different but overlapping populations of excitatory neurons. The impact of these waveform specific responses on the activation of different subtypes of neurons as well as sensory perception merits further investigation.
Collapse
Affiliation(s)
- Kevin C Stieger
- Bioengineering, University of Pittsburgh, 300 Technology Dr, Pittsburgh, Pennsylvania, 15219, UNITED STATES
| | - James Regis Eles
- Department of Bioengineering, University of Pittsburgh, 300 Technology Dr, Pittsburgh, Pennsylvania, 15219, UNITED STATES
| | - Kip Ludwig
- Biomedical Engineering and Neurological Surgery, University of Wisconsin Madison, XXX, Madison, Wisconsin, 53706, UNITED STATES
| | - Takashi D Yoshida Kozai
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave, 5059-BST3, Pittsburgh, PA 15213, USA, Pittsburgh, Pennsylvania, 15219, UNITED STATES
| |
Collapse
|
8
|
Stieger KC, Eles JR, Ludwig KA, Kozai TDY. In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. J Neurosci Res 2020; 98:2072-2095. [PMID: 32592267 DOI: 10.1002/jnr.24676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Electrical stimulation has been critical in the development of an understanding of brain function and disease. Despite its widespread use and obvious clinical potential, the mechanisms governing stimulation in the cortex remain largely unexplored in the context of pulse parameters. Modeling studies have suggested that modulation of stimulation pulse waveform may be able to control the probability of neuronal activation to selectively stimulate either cell bodies or passing fibers depending on the leading polarity. Thus, asymmetric waveforms with equal charge per phase (i.e., increasing the leading phase duration and proportionately decreasing the amplitude) may be able to activate a more spatially localized or distributed population of neurons if the leading phase is cathodic or anodic, respectively. Here, we use two-photon and mesoscale calcium imaging of GCaMP6s expressed in excitatory pyramidal neurons of male mice to investigate the role of pulse polarity and waveform asymmetry on the spatiotemporal properties of direct neuronal activation with 10-Hz electrical stimulation. We demonstrate that increasing cathodic asymmetry effectively reduces neuronal activation and results in a more spatially localized subpopulation of activated neurons without sacrificing the density of activated neurons around the electrode. Conversely, increasing anodic asymmetry increases the spatial spread of activation and highly resembles spatiotemporal calcium activity induced by conventional symmetric cathodic stimulation. These results suggest that stimulation polarity and asymmetry can be used to modulate the spatiotemporal dynamics of neuronal activity thus increasing the effective parameter space of electrical stimulation to restore sensation and study circuit dynamics.
Collapse
Affiliation(s)
- Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, USA.,Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, USA.,Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|