1
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
2
|
Fan J, Li X, Wang P, Yang F, Zhao B, Yang J, Zhao Z, Li X. A Hyperflexible Electrode Array for Long-Term Recording and Decoding of Intraspinal Neuronal Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303377. [PMID: 37870208 PMCID: PMC10667843 DOI: 10.1002/advs.202303377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/23/2023] [Indexed: 10/24/2023]
Abstract
Neural interfaces for stable access to the spinal cord (SC) electrical activity can benefit patients with motor dysfunctions. Invasive high-density electrodes can directly extract signals from SC neuronal populations that can be used for the facilitation, adjustment, and reconstruction of motor actions. However, developing neural interfaces that can achieve high channel counts and long-term intraspinal recording remains technically challenging. Here, a biocompatible SC hyperflexible electrode array (SHEA) with an ultrathin structure that minimizes mechanical mismatch between the interface and SC tissue and enables stable single-unit recording for more than 2 months in mice is demonstrated. These results show that SHEA maintains stable impedance, signal-to-noise ratio, single-unit yield, and spike amplitude after implantation into mouse SC. Gait analysis and histology show that SHEA implantation induces negligible behavioral effects and Inflammation. Additionally, multi-unit signals recorded from the SC ventral horn can predict the mouse's movement trajectory with a high decoding coefficient of up to 0.95. Moreover, during step cycles, it is found that the neural trajectory of spikes and low-frequency local field potential (LFP) signal exhibits periodic geometry patterns. Thus, SHEA can offer an efficient and reliable SC neural interface for monitoring and potentially modulating SC neuronal activity associated with motor dysfunctions.
Collapse
Affiliation(s)
- Jie Fan
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Xiaocheng Li
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Peiyu Wang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Fan Yang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Bingzhen Zhao
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Jianing Yang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Zhengtuo Zhao
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Xue Li
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| |
Collapse
|
3
|
Liu X, Xu Z, Fu X, Liu Y, Jia H, Yang Z, Zhang J, Wei S, Duan X. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Flexible implantable electrodes enable months-long stable recording of single-unit signals from rat brains. Despite extensive efforts in the development of flexible probes for brain recording, thus far there are no conclusions on their application in long-term single neuronal recording from the spinal cord which is more mechanically active. To this end, we realized the chronic recording of single-unit signals from the spinal cord of freely-moving rats using flexible carbon nanotube fiber (CNTF) electrodes. Approach. We developed flexible CNTF electrodes for intraspinal recording. Continuous in vivo impedance monitoring and histology studies were conducted to explore the critical factors determining the longevity of the recording, as well as to illustrate the evolution of the electrode-tissue interface. Gait analysis were performed to evaluate the biosafety of the chronic intraspinal implantation of the CNTF electrodes. Main results. By increasing the insulation thickness of the CNTF electrodes, single-unit signals were continuously recorded from the spinal cord of freely-moving rats without electrode repositioning for 3-4 months. Single neuronal and local field potential activities in response to somatic mechanical stimulation were successfully recorded from the spinal dorsal horns. Histological data demonstrated the ability of the CNTF microelectrodes to form an improved intraspinal interfaces with greatly reduced gliosis compared to their stiff metal counterparts. Continuous impedance monitoring suggested that the longevity of the intraspinal recording with CNTF electrodes was determined by the insulation durability. Gait analysis showed that the chronic presence of the CNTF electrodes caused no noticeable locomotor deficits in rats. Significance. It was found that the chronic recording from the spinal cord faces more stringent requirements on the electrode structural durability than recording from the brain. The stable, long-term intraspinal recording provides unique capabilities for studying the physiological functions of the spinal cord relating to motor, sensation, and autonomic control in both health and disease.
Collapse
|
4
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
5
|
Lang Y, Tang R, Liu Y, Xi P, Liu H, Quan Z, Song D, Lv X, Huang Q, He J. Multisite Simultaneous Neural Recording of Motor Pathway in Free-Moving Rats. BIOSENSORS 2021; 11:bios11120503. [PMID: 34940260 PMCID: PMC8699182 DOI: 10.3390/bios11120503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 05/22/2023]
Abstract
Neural interfaces typically focus on one or two sites in the motoneuron system simultaneously due to the limitation of the recording technique, which restricts the scope of observation and discovery of this system. Herein, we built a system with various electrodes capable of recording a large spectrum of electrophysiological signals from the cortex, spinal cord, peripheral nerves, and muscles of freely moving animals. The system integrates adjustable microarrays, floating microarrays, and microwires to a commercial connector and cuff electrode on a wireless transmitter. To illustrate the versatility of the system, we investigated its performance for the behavior of rodents during tethered treadmill walking, untethered wheel running, and open field exploration. The results indicate that the system is stable and applicable for multiple behavior conditions and can provide data to support previously inaccessible research of neural injury, rehabilitation, brain-inspired computing, and fundamental neuroscience.
Collapse
Affiliation(s)
- Yiran Lang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Rongyu Tang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (P.X.); (H.L.)
| | - Pengcheng Xi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (P.X.); (H.L.)
| | - Honghao Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (P.X.); (H.L.)
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.Q.); (D.S.)
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.Q.); (D.S.)
| | - Xiaodong Lv
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Qiang Huang
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
| | - Jiping He
- Beijing Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (Y.L.); (R.T.); (X.L.); (Q.H.)
- Correspondence:
| |
Collapse
|
6
|
Shokur S, Mazzoni A, Schiavone G, Weber DJ, Micera S. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. MED 2021; 2:912-937. [DOI: 10.1016/j.medj.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
|
7
|
Mylavarapu R, Prins NW, Pohlmeyer EA, Shoup AM, Debnath S, Geng S, Sanchez JC, Schwartz O, Prasad A. Chronic recordings from the marmoset motor cortex reveals modulation of neural firing and local field potentials overlap with macaques. J Neural Eng 2021; 18. [PMID: 34225263 DOI: 10.1088/1741-2552/ac115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022]
Abstract
Objective.The common marmoset has been increasingly used in neural interfacing studies due to its smaller size, easier handling, and faster breeding compared to Old World non-human primate (NHP) species. While assessment of cortical anatomy in marmosets has shown strikingly similar layout to macaques, comprehensive assessment of electrophysiological properties underlying forelimb reaching movements in this bridge species does not exist. The objective of this study is to characterize electrophysiological properties of signals recorded from the marmoset primary motor cortex (M1) during a reach task and compare with larger NHP models such that this smaller NHP model can be used in behavioral neural interfacing studies.Approach and main results.Neuronal firing rates and local field potentials (LFPs) were chronically recorded from M1 in three adult, male marmosets. Firing rates, mu + beta and high gamma frequency bands of LFPs were evaluated for modulation with respect to movement. Firing rate and regularity of neurons of the marmoset M1 were similar to that reported in macaques with a subset of neurons showing selectivity to movement direction. Movement phases (rest vs move) was classified from both neural spiking and LFPs. Microelectrode arrays provide the ability to sample small regions of the motor cortex to drive brain-machine interfaces (BMIs). The results demonstrate that marmosets are a robust bridge species for behavioral neuroscience studies with motor cortical electrophysiological signals recorded from microelectrode arrays that are similar to Old World NHPs.Significance. As marmosets represent an interesting step between rodent and macaque models, successful demonstration that neuron modulation in marmoset motor cortex is analogous to reports in macaques illustrates the utility of marmosets as a viable species for BMI studies.
Collapse
Affiliation(s)
- Ramanamurthy Mylavarapu
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL United States of America
| | - Noeline W Prins
- Department of Electrical and Information Engineering, University of Ruhuna, Galle, Sri Lanka
| | - Eric A Pohlmeyer
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States of America
| | - Alden M Shoup
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL United States of America
| | - Shubham Debnath
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Shijia Geng
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, United States of America
| | | | - Odelia Schwartz
- Department of Computer Science, University of Miami, Coral Gables, FL, United States of America
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL United States of America.,The Miami Project to Cure Paralysis, University of Miami, Miami, FL United States of America
| |
Collapse
|
8
|
Cellular therapy for treatment of spinal cord injury in Zebrafish model. Mol Biol Rep 2021; 48:1787-1800. [PMID: 33459959 DOI: 10.1007/s11033-020-06126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury is a serious problem with a high rate of morbidity and mortality for all persons, especially young people (15-25 years old). Due to the large burden and the costs incurred on the government, finding the best therapeutic approach is necessary. In this respect, treatment strategies based on the disease mechanism can be effective. After the first trauma of spinal cord cascades, cellular events happen one after the other known as secondary trauma. The mechanism of secondary events of spinal cord injury could be helpful for target therapy as trying to stop the secondary trauma. Herein, some medical and surgical therapy has been introduced and cell therapy strategy was considered as a recent method. Actually, cell therapy is defined as the application of different cells including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and some others to replace or reconstruct the damaged tissues and restore their functions. However, as a newly emerged therapeutic method, cell therapy should be used through various subclinical studies in animal models to assess the efficacy of the treatment under controlled conditions. In this review, the role of Zebrafish as a recommended model has been discussed and combinatory approach as the probably most useful treatment has been suggested.
Collapse
|