1
|
Losanno E, Badi M, Roussinova E, Bogaard A, Delacombaz M, Shokur S, Micera S. An Investigation of Manifold-Based Direct Control for a Brain-to-Body Neural Bypass. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:271-280. [PMID: 38766541 PMCID: PMC11100864 DOI: 10.1109/ojemb.2024.3381475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 05/22/2024] Open
Abstract
Objective: Brain-body interfaces (BBIs) have emerged as a very promising solution for restoring voluntary hand control in people with upper-limb paralysis. The BBI module decoding motor commands from brain signals should provide the user with intuitive, accurate, and stable control. Here, we present a preliminary investigation in a monkey of a brain decoding strategy based on the direct coupling between the activity of intrinsic neural ensembles and output variables, aiming at achieving ease of learning and long-term robustness. Results: We identified an intrinsic low-dimensional space (called manifold) capturing the co-variation patterns of the monkey's neural activity associated to reach-to-grasp movements. We then tested the animal's ability to directly control a computer cursor using cortical activation along the manifold axes. By daily recalibrating only scaling factors, we achieved rapid learning and stable high performance in simple, incremental 2D tasks over more than 12 weeks of experiments. Finally, we showed that this brain decoding strategy can be effectively coupled to peripheral nerve stimulation to trigger voluntary hand movements. Conclusions: These results represent a proof of concept of manifold-based direct control for BBI applications.
Collapse
Affiliation(s)
- E. Losanno
- The Biorobotics Institute and Department of Excellence in Robotics and AIScuola Superiore Sant'Anna56025PisaItaly
- Modular Implantable Neuroprostheses (MINE) LaboratoryUniversità Vita-Salute San Raffaele and Scuola Superiore Sant'AnnaMilanItaly
| | - M. Badi
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - E. Roussinova
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - A. Bogaard
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and MedicineUniversity of Fribourg1700FribourgSwitzerland
| | - M. Delacombaz
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and MedicineUniversity of Fribourg1700FribourgSwitzerland
| | - S. Shokur
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - S. Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AIScuola Superiore Sant'Anna56025PisaItaly
- Modular Implantable Neuroprostheses (MINE) LaboratoryUniversità Vita-Salute San Raffaele and Scuola Superiore Sant'AnnaMilanItaly
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
2
|
Mirfathollahi A, Ghodrati MT, Shalchyan V, Zarrindast MR, Daliri MR. Decoding hand kinetics and kinematics using somatosensory cortex activity in active and passive movement. iScience 2023; 26:107808. [PMID: 37736040 PMCID: PMC10509302 DOI: 10.1016/j.isci.2023.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Area 2 of the primary somatosensory cortex (S1), encodes proprioceptive information of limbs. Several studies investigated the encoding of movement parameters in this area. However, the single-trial decoding of these parameters, which can provide additional knowledge about the amount of information available in sub-regions of this area about instantaneous limb movement, has not been well investigated. We decoded kinematic and kinetic parameters of active and passive hand movement during center-out task using conventional and state-based decoders. Our results show that this area can be used to accurately decode position, velocity, force, moment, and joint angles of hand. Kinematics had higher accuracies compared to kinetics and active trials were decoded more accurately than passive trials. Although the state-based decoder outperformed the conventional decoder in the active task, it was the opposite in the passive task. These results can be used in intracortical micro-stimulation procedures to provide proprioceptive feedback to BCI subjects.
Collapse
Affiliation(s)
- Alavie Mirfathollahi
- Institute for Cognitive Science Studies (ICSS), Pardis 16583- 44575 Tehran, Iran
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Mohammad Taghi Ghodrati
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Vahid Shalchyan
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Mohammad Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Pardis 16583- 44575 Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Reza Daliri
- Institute for Cognitive Science Studies (ICSS), Pardis 16583- 44575 Tehran, Iran
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
3
|
Barra B, Conti S, Perich MG, Zhuang K, Schiavone G, Fallegger F, Galan K, James ND, Barraud Q, Delacombaz M, Kaeser M, Rouiller EM, Milekovic T, Lacour S, Bloch J, Courtine G, Capogrosso M. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nat Neurosci 2022; 25:924-934. [PMID: 35773543 DOI: 10.1038/s41593-022-01106-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
Regaining arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control has limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury, using spinal cord stimulation. Our neural interface leverages the functional organization of the dorsal roots to convey artificial excitation via electrical stimulation to relevant spinal segments at appropriate movement phases. Stimulation bursts targeting specific spinal segments produced sustained arm movements, enabling monkeys with arm paralysis to perform an unconstrained reach-and-grasp task. Stimulation specifically improved strength, task performances and movement quality. Electrophysiology suggested that residual descending inputs were necessary to produce coordinated movements. The efficacy and reliability of our approach hold realistic promises of clinical translation.
Collapse
Affiliation(s)
- Beatrice Barra
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara Conti
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Matthew G Perich
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Katie Zhuang
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Katia Galan
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Delacombaz
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mélanie Kaeser
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eric M Rouiller
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tomislav Milekovic
- Department of Fundamental Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephanie Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Neurosurgery, CHUV, Lausanne, Switzerland
| | - Marco Capogrosso
- Platform of Translational Neuroscience, Department of Neuroscience and Movement Sciences, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland. .,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Losanno E, Badi M, Wurth S, Borgognon S, Courtine G, Capogrosso M, Rouiller EM, Micera S. Bayesian optimization of peripheral intraneural stimulation protocols to evoke distal limb movements. J Neural Eng 2021; 18. [PMID: 34874320 DOI: 10.1088/1741-2552/ac3f6c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022]
Abstract
Objective.Motor neuroprostheses require the identification of stimulation protocols that effectively produce desired movements. Manual search for these protocols can be very time-consuming and often leads to suboptimal solutions, as several stimulation parameters must be personalized for each subject for a variety of target motor functions. Here, we present an algorithm that efficiently tunes peripheral intraneural stimulation protocols to elicit functionally relevant distal limb movements.Approach.We developed the algorithm using Bayesian optimization (BO) with multi-output Gaussian Processes (GPs) and defined objective functions based on coordinated muscle recruitment. We applied the algorithm offline to data acquired in rats for walking control and in monkeys for hand grasping control and compared different GP models for these two systems. We then performed a preliminary online test in a monkey to experimentally validate the functionality of our method.Main results.Offline, optimal intraneural stimulation protocols for various target motor functions were rapidly identified in both experimental scenarios. Using the model that performed best, the algorithm converged to stimuli that evoked functionally consistent movements with an average number of actions equal to 20% of the search space size in both the rat and monkey animal models. Online, the algorithm quickly guided the observations to stimuli that elicited functional hand gestures, although more selective motor outputs could have been achieved by refining the objective function used.Significance.These results demonstrate that BO can reliably and efficiently automate the tuning of peripheral neurostimulation protocols, establishing a translational framework to configure peripheral motor neuroprostheses in clinical applications. The proposed method can also potentially be applied to optimize motor functions using other stimulation modalities.
Collapse
Affiliation(s)
- E Losanno
- The Biorobotics Institute and Department of Excellent in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - M Badi
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Wurth
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Borgognon
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Center for Neuroprosthetics and BrainMind Institute, School of Life Sciences, Eécole Polytechnique Feédeérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Courtine
- Center for Neuroprosthetics and BrainMind Institute, School of Life Sciences, Eécole Polytechnique Feédeérale de Lausanne (EPFL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - M Capogrosso
- Department of Neurological Surgery, Rehabilitation and Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - E M Rouiller
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - S Micera
- The Biorobotics Institute and Department of Excellent in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Badi M, Wurth S, Scarpato I, Roussinova E, Losanno E, Bogaard A, Delacombaz M, Borgognon S, C Vanc Ara P, Fallegger F, Su DK, Schmidlin E, Courtine G, Bloch J, Lacour SP, Stieglitz T, Rouiller EM, Capogrosso M, Micera S. Intrafascicular peripheral nerve stimulation produces fine functional hand movements in primates. Sci Transl Med 2021; 13:eabg6463. [PMID: 34705521 DOI: 10.1126/scitranslmed.abg6463] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marion Badi
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sophie Wurth
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ilaria Scarpato
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Evgenia Roussinova
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Elena Losanno
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | - Andrew Bogaard
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Maude Delacombaz
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Simon Borgognon
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland.,Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Paul C Vanc Ara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg, and BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, 1202 Geneva, Switzerland
| | - David K Su
- Neurological Surgery, Harborview Medical Center, Seattle, WA 98104, USA
| | - Eric Schmidlin
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL, University Hospital of Lausanne (CHUV), and University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL, University Hospital of Lausanne (CHUV), and University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, 1202 Geneva, Switzerland
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg, and BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany
| | - Eric M Rouiller
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Marco Capogrosso
- Department of Neuroscience and Movement Sciences, Platform of Translational Neurosciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland.,Department of Neurological Surgery, Rehabilitation and Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| |
Collapse
|
6
|
Greiner N, Barra B, Schiavone G, Lorach H, James N, Conti S, Kaeser M, Fallegger F, Borgognon S, Lacour S, Bloch J, Courtine G, Capogrosso M. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun 2021; 12:435. [PMID: 33469022 PMCID: PMC7815834 DOI: 10.1038/s41467-020-20703-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Epidural electrical stimulation (EES) of lumbosacral sensorimotor circuits improves leg motor control in animals and humans with spinal cord injury (SCI). Upper-limb motor control involves similar circuits, located in the cervical spinal cord, suggesting that EES could also improve arm and hand movements after quadriplegia. However, the ability of cervical EES to selectively modulate specific upper-limb motor nuclei remains unclear. Here, we combined a computational model of the cervical spinal cord with experiments in macaque monkeys to explore the mechanisms of upper-limb motoneuron recruitment with EES and characterize the selectivity of cervical interfaces. We show that lateral electrodes produce a segmental recruitment of arm motoneurons mediated by the direct activation of sensory afferents, and that muscle responses to EES are modulated during movement. Intraoperative recordings suggested similar properties in humans at rest. These modelling and experimental results can be applied for the development of neurotechnologies designed for the improvement of arm and hand control in humans with quadriplegia. The efficacy of epidural electrical stimulation (EES) to engage arm muscles and improve movement after spinal cord injury is still unclear. Here, the authors investigated how EES can recruit upper-limb motor neurons by combining computational modelling with experiments in non-human primates.
Collapse
Affiliation(s)
- Nathan Greiner
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland. .,Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Beatrice Barra
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Henri Lorach
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), Lausanne, Switzerland
| | - Nicholas James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Sara Conti
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Melanie Kaeser
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Simon Borgognon
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stéphanie Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (NeuroRestore), Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marco Capogrosso
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland. .,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Kibleur P, Tata SR, Greiner N, Conti S, Barra B, Zhuang K, Kaeser M, Ijspeert A, Capogrosso M. Spatiotemporal Maps of Proprioceptive Inputs to the Cervical Spinal Cord During Three-Dimensional Reaching and Grasping. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1668-1677. [DOI: 10.1109/tnsre.2020.2986491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|