1
|
Lei K, Yuan M, Li S, Zhou Q, Li M, Zeng D, Guo Y, Guo L. Performance evaluation of E-nose and E-tongue combined with machine learning for qualitative and quantitative assessment of bear bile powder. Anal Bioanal Chem 2023:10.1007/s00216-023-04740-5. [PMID: 37199792 DOI: 10.1007/s00216-023-04740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Bear bile powder (BBP) is a valuable animal-derived product with a huge adulteration problem on market. It is a crucially important task to identify BBP and its counterfeit. Electronic sensory technologies are the inheritance and development of traditional empirical identification. Considering that each drug has its own specific odor and taste characteristics, electronic tongue (E-tongue), electronic nose (E-nose) and GC-MS were used to evaluate the aroma and taste of BBP and its common counterfeit. Two active components of BBP, namely tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) were measured and linked with the electronic sensory data. The results showed that bitterness was the main flavor of TUDCA in BBP, saltiness and umami were the main flavor of TCDCA. The volatiles detected by E-nose and GC-MS were mainly aldehydes, ketones, alcohols, hydrocarbons, carboxylic acids, heterocyclic, lipids, and amines, mainly earthy, musty, coffee, bitter almond, burnt, pungent odor descriptions. Four different machine learning algorithms (backpropagation neural network, support vector machine, K-nearest neighbor, and random forest) were used to identify BBP and its counterfeit, and the regression performance of these four algorithms was also evaluated. For qualitative identification, the algorithm of random forest has shown the best performance, with 100% accuracy, precision, recall and F1-score. Also, the random forest algorithm has the best R2 and the lowest RMSE in terms of quantitative prediction.
Collapse
Affiliation(s)
- Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Sihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
| | - Meifeng Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dafu Zeng
- Chengdu Jingbo Biotechnology Co., Ltd, No.39 Renhe Street, Chengdu, 611731, China
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, China.
| |
Collapse
|
2
|
Trumpis M, Chiang CH, Orsborn AL, Bent B, Li J, Rogers JA, Pesaran B, Cogan G, Viventi J. Sufficient sampling for kriging prediction of cortical potential in rat, monkey, and human µECoG. J Neural Eng 2021; 18. [PMID: 33326943 DOI: 10.1088/1741-2552/abd460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Objective. Large channel count surface-based electrophysiology arrays (e.g. µECoG) are high-throughput neural interfaces with good chronic stability. Electrode spacing remains ad hoc due to redundancy and nonstationarity of field dynamics. Here, we establish a criterion for electrode spacing based on the expected accuracy of predicting unsampled field potential from sampled sites.Approach. We applied spatial covariance modeling and field prediction techniques based on geospatial kriging to quantify sufficient sampling for thousands of 500 ms µECoG snapshots in human, monkey, and rat. We calculated a probably approximately correct (PAC) spacing based on kriging that would be required to predict µECoG fields at≤10% error for most cases (95% of observations).Main results. Kriging theory accurately explained the competing effects of electrode density and noise on predicting field potential. Across five frequency bands from 4-7 to 75-300 Hz, PAC spacing was sub-millimeter for auditory cortex in anesthetized and awake rats, and posterior superior temporal gyrus in anesthetized human. At 75-300 Hz, sub-millimeter PAC spacing was required in all species and cortical areas.Significance. PAC spacing accounted for the effect of signal-to-noise on prediction quality and was sensitive to the full distribution of non-stationary covariance states. Our results show that µECoG arrays should sample at sub-millimeter resolution for applications in diverse cortical areas and for noise resilience.
Collapse
Affiliation(s)
- Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Amy L Orsborn
- Center for Neural Science, New York University, New York, NY 10003, United States of America.,Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, United States of America.,Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States of America.,Washington National Primate Research Center, Seattle, Washington 98195, United States of America
| | - Brinnae Bent
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Jinghua Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America.,Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America.,Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, United States of America
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America.,Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, United States of America.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States of America.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003, United States of America
| | - Gregory Cogan
- Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, United States of America.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States of America.,Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States of America.,Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, United States of America
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America.,Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, United States of America.,Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, United States of America.,Department of Neurobiology, Duke School of Medicine, Durham, NC 27710, United States of America
| |
Collapse
|