1
|
Klit FØ, Bollerslev VM, Borbjerg MK, Røikjer J, Ejskjær N, Mørch CD. Improving Perception Threshold Tracking for Rapid Evaluation of Diabetic Peripheral Neuropathy. Muscle Nerve 2025; 71:183-190. [PMID: 39623669 DOI: 10.1002/mus.28310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION/AIMS Accurate assessment of diabetic peripheral neuropathy (DPN) is essential to prevent further complications, yet current methods have limitations. Perception threshold tracking (PTT) offers promise as a novel approach for rapid evaluation of both large and small fiber dysfunction. To enhance efficiency, this study explores the Psi method compared to the Method of Limits (MoL) in estimating perception thresholds. The aim is to assess agreement, uncertainty, and the number of stimuli required for adequate estimation by each method. METHODS Forty-three participants with diabetes underwent an estimated sural nerve conduction study, quantitative sensory testing, vibration perception threshold testing, and PTT. PTT utilized both patch and pin electrode configurations to activate large and small fibers, respectively. The uncertainty of perception thresholds was estimated as the inverse slope of the psychometric functions. RESULTS Perception thresholds were significantly higher for the patch electrode (2.5 [2.1-3.0] mA) compared to the pin electrode (0.71 [0.56-0.91] mA; rmANOVA, p < 0.001). Bland-Altman analysis revealed a non-significant 3.3% bias between the methods, but wide limits of agreement (-42%-84%). Uncertainty was lower for the Psi method (0.80 [0.58;1.11] mA) compared to MoL (2.0 [1.2;2.9] mA; rmANOVA, p < 0.005). The Psi method achieved acceptable perception threshold estimation with only 30 stimuli. DISCUSSION At the group level, the MoL and Psi methods produced similar perception thresholds. However, the Psi method required fewer stimuli and yielded less uncertainty in perception threshold estimation compared to MoL. Future studies should prioritize the Psi method for its efficiency and reliability.
Collapse
Affiliation(s)
- Frederik Østergaard Klit
- Health Science and Technology, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
| | - Vitus Milver Bollerslev
- Health Science and Technology, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
| | | | - Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Niels Ejskjær
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Charlton JM, Foulger LH, Kuo C, Blouin JS. A wearable system for experimental knee pain during real-world locomotion: habituation and motor adaptation. IEEE Trans Neural Syst Rehabil Eng 2025; PP:441-452. [PMID: 40031042 DOI: 10.1109/tnsre.2025.3528910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We developed a novel, wearable system that couples motion sensing and electrical stimulation in real-time to study motor adaptation in new environments. In two experiments we established key information needed in the development of our system including 1) pain habituation patterns and motor adaptations to knee pain while walking, 2) a model of electrical stimulation magnitude as a function of pain perception, and 3) gait-phase-dependent modulation of pain intensity. Over three 10-minute walking bouts, we observed significant pain habituation (p<0.001) to the tonic electrical stimuli after 60-210 seconds. However, by interleaving rest periods (10:10 min stimulation to rest), pain intensity returned to initial values at the start of the subsequent walking bouts (p=0.417, p=0.043). Participants also exhibited consistent local motor adaptation to the painful stimuli, consisting of greater knee flexion (1-3 degrees) throughout the gait cycle (sig. comparisons p<0.012) and across the walking bouts. We used the method of constants to quantify the pain intensity-stimulation magnitude relationship over 400 stimuli. A linear model fit the data well for intensities >1/10, though a piecewise linear (Adj R2=0.874) or exponential model (Adj R2=0.869) was required to fit the perception data across the stimulus intensity range (0-5/10). Finally, participants did not report gait-phase-dependent modulation of pain intensity while walking with tonic electrical stimulation. Our wearable system supports new motor adaptation experiments in novel contexts not previously possible. These results show the system induces localized pain perceptions and motor adaptations in complex movements (walking) while providing guidelines to structure future experimental pain studies.
Collapse
|
3
|
Røikjer J, Borbjerg MK, Andresen T, Giordano R, Hviid CVB, Mørch CD, Karlsson P, Klonoff DC, Arendt-Nielsen L, Ejskjaer N. Diabetic Peripheral Neuropathy: Emerging Treatments of Neuropathic Pain and Novel Diagnostic Methods. J Diabetes Sci Technol 2024:19322968241279553. [PMID: 39282925 PMCID: PMC11571639 DOI: 10.1177/19322968241279553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes, often leading to severe neuropathic pain. Although other diabetes-related complications have witnessed a surge of emerging treatments in recent years, DPN has seen minimal progression. This stagnation stems from various factors, including insensitive diagnostic methods and inadequate treatment options for neuropathic pain. METHODS In this comprehensive review, we highlight promising novel diagnostic techniques for assessing DPN, elucidating their development, strengths, and limitations, and assessing their potential as future reliable clinical biomarkers and endpoints. In addition, we delve into the most promising emerging pharmacological and mechanistic treatments for managing neuropathic pain, an area currently characterized by inadequate pain relief and a notable burden of side effects. RESULTS Skin biopsies, corneal confocal microscopy, transcutaneous electrical stimulation, blood-derived biomarkers, and multi-omics emerge as some of the most promising new techniques, while low-dose naltrexone, selective sodium-channel blockers, calcitonin gene-related peptide antibodies, and angiotensin type 2 receptor antagonists emerge as some of the most promising new drug candidates. CONCLUSION Our review concludes that although several promising diagnostic modalities and emerging treatments exist, an ongoing need persists for the further development of sensitive diagnostic tools and mechanism-based, personalized treatment approaches.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Krabsmark Borbjerg
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| | - Trine Andresen
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Arendt-Nielsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
4
|
Jansen N, Berfelo T, Vonkeman HE, Ten Klooster PM, van Den Berg B, Krabbenbos IP, Buitenweg JR. The Relationship between Nociceptive Detection Thresholds and Pressure- and Electrical Pain Thresholds: An Explorative Study in Rheumatoid Arthritis Patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083185 DOI: 10.1109/embc40787.2023.10340755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recently, methods have been developed enabling the characterization of the nociceptive function at the detection threshold level by measuring nociceptive detection thresholds (NDTs), rather than at the level of the pain threshold via pain threshold (PT) measurements. Both NDT and PT measurements aim to characterize (parts of) the nociceptive system. To date it is unclear if, and if so to what extent, the two outcomes relate to one another. In this study, the primary aim is to explore the relationship between the two measures in patients with rheumatoid arthritis (RA). As secondary aim, we explore differences in NDT between these RA patients with age- and sex-matched healthy controls (HC) from a readily existing dataset. In total 46 RA patients have been recruited, whereby the pressure- (PPT; bilaterally at two locations) and electrical (EPT) pain threshold were evaluated, as well as the NDTs. Significant, positive correlations were found between the EPT and PPT (R=0.54-0.60), but not with the NDTs (R≤0.25). As compared to HC, higher NDTs were found in the RA group. As the presence of a statistically significant weak relationship can only be evaluated using a larger sample size, our results indicate that there is no moderate or stronger relation between PT and NDT outcomes. This implicates that the two outcomes are not strongly driven by the same (nociceptive) mechanism(s). Future research into NDTs and what factors and/or mechanisms affect the outcome, could yield relevant insights into how to use and interpret the results of this relatively new method.Clinical Relevance - The evaluation of nociceptive detection thresholds, in isolation or together with conventionally evaluated pain thresholds, might provide valuable and complementary insights into nociceptive (dis)function in man.
Collapse
|
5
|
Røikjer J, Croosu SS, Frøkjær JB, Hansen TM, Arendt-Nielsen L, Ejskjaer N, Mørch CD. Perception threshold tracking: validating a novel method for assessing function of large and small sensory nerve fibers in diabetic peripheral neuropathy with and without pain. Pain 2023; 164:886-894. [PMID: 36130086 DOI: 10.1097/j.pain.0000000000002780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT It remains unknown why some people with diabetes develop painful neuropathies while others experience no pain. This study aimed to validate a novel method for assessing the function of small sensory nerves in diabetes to further elucidate this phenomenon. The function of large and small nerves was assessed using a novel perception threshold tracking technique in 3 well-characterized groups (n = 60) with type 1 diabetes, namely, (1) painful diabetic peripheral neuropathy (T1DM + PDPN), (2) painless diabetic peripheral neuropathy (T1DM + DPN), and (3) no neuropathy (T1DM - DPN), and healthy controls (n = 20). Electrical currents with different shapes, duration, and intensities were applied by 2 different skin electrodes activating large and small fibers, respectively. The minimal current needed to activate the fibers were analyzed as the rheobase of the stimulus-response function. Nerve fiber selectivity was measured by accommodation properties of stimulated nerves. The rheobase of both fiber types were highest for T1DM + PDPN, followed by T1DM + DPN, T1DM - DPN, and healthy controls, indicating that the nerve properties are specific in individuals with diabetes and pain. There was an overall significant difference between the groups ( P < 0.01). The accommodation properties of stimulated fibers were different between the 2 electrodes ( P < 0.05) apart from in the group with T1DM + PDPN, where both electrodes stimulated nerves displaying properties similar to large fibers. Perception threshold tracking reveals differences in large and small nerve fiber function between the groups with and without diabetes, DPN, and pain. This indicates that the methods have potential applications in screening DPN and explore further the features differentiating painful from nonpainful DPN.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Suganthiya Santhiapillai Croosu
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tine Maria Hansen
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Pia H, Nochi Z, Kristensen AG, Pelz B, Goetz M, Hoeink JN, Blockeel AJ, Mouraux A, Truini A, Finnerup NB, Phillips KG, Treede RD, Tankisi H. The test–retest reliability of large and small fiber nerve excitability testing with threshold tracking. Clin Neurophysiol Pract 2023; 8:71-78. [PMID: 37181417 PMCID: PMC10172996 DOI: 10.1016/j.cnp.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
Objective Standard nerve excitability testing (NET) predominantly assesses Aα- and Aβ-fiber function, but a method examining small afferents would be of great interest in pain studies. Here, we examined the properties of a novel perception threshold tracking (PTT) method that preferentially activates Aδ-fibers using weak currents delivered by a novel multipin electrode and compared its reliability with NET. Methods Eighteen healthy subjects (mean age:34.06 ± 2.0) were examined three times with motor and sensory NET and PTT in morning and afternoon sessions on the same day (intra-day reliability) and after a week (inter-day reliability). NET was performed on the median nerve, while PTT stimuli were delivered through a multipin electrode located on the forearm. During PTT, subjects indicated stimulus perception via a button press and the intensity of the current was automatically increased or decreased accordingly by Qtrac software. This allowed changes in the perception threshold to be tracked during strength-duration time constant (SDTC) and threshold electrotonus protocols. Results The coefficient of variation (CoV) and interclass coefficient of variation (ICC) showed good-excellent reliability for most NET parameters. PTT showed poor reliability for both SDTC and threshold electrotonus parameters. There was a significant correlation between large (sensory NET) and small (PTT) fiber SDTC when all sessions were pooled (r = 0.29, p = 0.03). Conclusions Threshold tracking technique can be applied directly to small fibers via a psychophysical readout, but with the current technique, the reliability is poor. Significance Further studies are needed to examine whether Aβ-fiber SDTC may be a surrogate biomarker for peripheral nociceptive signalling.
Collapse
|
7
|
Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1099282. [PMID: 36926544 PMCID: PMC10013045 DOI: 10.3389/fnetp.2023.1099282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
In a healthy state, pain plays an important role in natural biofeedback loops and helps to detect and prevent potentially harmful stimuli and situations. However, pain can become chronic and as such a pathological condition, losing its informative and adaptive function. Efficient pain treatment remains a largely unmet clinical need. One promising route to improve the characterization of pain, and with that the potential for more effective pain therapies, is the integration of different data modalities through cutting edge computational methods. Using these methods, multiscale, complex, and network models of pain signaling can be created and utilized for the benefit of patients. Such models require collaborative work of experts from different research domains such as medicine, biology, physiology, psychology as well as mathematics and data science. Efficient work of collaborative teams requires developing of a common language and common level of understanding as a prerequisite. One of ways to meet this need is to provide easy to comprehend overviews of certain topics within the pain research domain. Here, we propose such an overview on the topic of pain assessment in humans for computational researchers. Quantifications related to pain are necessary for building computational models. However, as defined by the International Association of the Study of Pain (IASP), pain is a sensory and emotional experience and thus, it cannot be measured and quantified objectively. This results in a need for clear distinctions between nociception, pain and correlates of pain. Therefore, here we review methods to assess pain as a percept and nociception as a biological basis for this percept in humans, with the goal of creating a roadmap of modelling options.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Susanne Becker
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
- Integrative Spinal Research, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Multifocal tDCS Targeting the Motor Network Modulates Event-Related Cortical Responses During Prolonged Pain. THE JOURNAL OF PAIN 2023; 24:226-236. [PMID: 36162791 DOI: 10.1016/j.jpain.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023]
Abstract
Multifocal transcranial direct current stimulation (tDCS) targeting several brain regions is promising for inducing cortical plasticity. It remains unknown whether multifocal tDCS aimed at the resting-state motor network (network-tDCS) can revert N2-P2 cortical responses otherwise attenuated during prolonged experimental pain. Thirty-eight healthy subjects participated in 2 sessions separated by 24 hours (Day1, Day2) of active (n = 19) or sham (n = 19) network-tDCS. Experimental pain induced by topical capsaicin was maintained for 24 hours and assessed using a numerical rating scale. Electrical detection and pain thresholds, and N2-P2 evoked potentials (electroencephalography) to noxious electrical stimulation were recorded before capsaicin-induced pain (Day1-baseline), after capsaicin application (Day1-post-cap), and after 2 sessions of network-tDCS (Day2). Capsaicin induced moderate pain at Day1-post-cap, which further increased at Day2 in both groups (P = .01). Electrical detection/pain thresholds did not change over time. N2-P2 responses were reduced on Day1-post-cap compared to Day1-baseline (P = .019). At Day2 compared with Day1-post-cap, N2-P2 responses were significantly higher in the Active network-tDCS group (P<.05), while the sham group remained inhibited. These results suggest that tDCS targeting regions associated with the motor network may modulate the late evoked brain responses to noxious peripheral stimulation otherwise initially inhibited by capsaicin-induced pain. PERSPECTIVE: This study extends the evidence of N2-P2 reduction due to capsaicin-induced pain from 30 minutes to 24 hrs. Moreover, 2 sessions of tDCS targeting the motor network in the early stage of nociceptive pain may revert the inhibition of N2-P2 associated with capsaicin-induced pain.
Collapse
|
9
|
Zamorano AM, Kleber B, Arguissain F, Vuust P, Flor H, Graven-Nielsen T. Extensive sensorimotor training enhances nociceptive cortical responses in healthy individuals. Eur J Pain 2023; 27:257-277. [PMID: 36394423 PMCID: PMC10107321 DOI: 10.1002/ejp.2057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolonged and repeated sensorimotor training is a crucial driver for promoting use-dependent plasticity, but also a main risk factor for developing musculoskeletal pain syndromes, yet the neural underpinnings that link repetitive movements to abnormal pain processing are unknown. METHODS Twenty healthy musicians, one of the best in vivo models to study use-dependent plasticity, and 20 healthy non-musicians were recruited. Perceptual thresholds, reaction times (RTs) and event-related potentials (ERPs) were recorded using nociceptive intra-epidermal and non-nociceptive transcutaneous electrical stimulation. RESULTS In response to comparable stimulus intensities, musicians compared to non-musicians showed larger non-nociceptive N140 (associated with higher activation of regions within the salience network), higher nociceptive N200 ERPs (associated with higher activation of regions within the sensorimotor network) and faster RTs to both stimuli. Non-musicians showed larger non-nociceptive P200 ERP. Notably, a similar P200 component prominently emerged during nociceptive stimulation in non-musicians. Across participants, larger N140 and N200 ERPs were associated with RTs, whereas the amount of daily practice in musicians explained non-nociceptive P200 and nociceptive P300 ERPs. CONCLUSIONS These novel findings indicate that the mechanisms by which extensive sensorimotor training promotes use-dependent plasticity in multisensory neural structures may also shape the neural signatures of nociceptive processing in healthy individuals. SIGNIFICANCE Repetitive sensorimotor training may increase the responsiveness of nociceptive evoked potentials. These novel data highlight the importance of repetitive sensorimotor practice as a contributing factor to the interindividual variability of nociceptive-related potentials.
Collapse
Affiliation(s)
- Anna M Zamorano
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Boris Kleber
- Center for Music in the Brain, Dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus and Aalborg, Denmark
| | - Federico Arguissain
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus and Aalborg, Denmark
| | - Herta Flor
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Niimi Y, Gomez-Tames J, Wasaka T, Hirata A. Selective stimulation of nociceptive small fibers during intraepidermal electrical stimulation: Experiment and computational analysis. Front Neurosci 2023; 16:1045942. [PMID: 36711140 PMCID: PMC9880216 DOI: 10.3389/fnins.2022.1045942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Electrical stimulation of skin nociceptors is gaining attention in pain research and peripheral neuropathy diagnosis. However, the optimal parameters for selective stimulation are still difficult to determine because they require simultaneous characterization of the electrical response of small fibers (Aδ- and C-fibers). In this study, we measured the in vivo electrical threshold responses of small fibers to train-pulse stimulation in humans for the first time. We also examined selective stimulation via a computational model, which combines electrical analysis, and terminal fiber and synaptic models, including the first cutaneous pain C-fiber model. Selective stimulation of small fibers is performed by injecting train-pulse stimulation via coaxial electrodes with an intraepidermal needle tip at varying pulse counts and frequencies. The activation Aδ- or C-fibers was discriminated from the differences in reaction time. Aδ-fiber elicited a pinpricking sensation with a mean reaction time of 0.522 s, and C-fiber elicited a tingling sensation or slight burning itch with a mean reaction time of 1.243 s. The implemented multiscale electrical model investigates synaptic effects while considering stimulation waveform characteristics. Experimental results showed that perception thresholds decreased with the number of consecutive pulses and frequency up to convergence (five pulses or 70 Hz) during the selective stimulation of Aδ- and C-fibers. Considering the synaptic properties, the optimal stimulus conditions for selective stimulation of Aδ- vs. C-fibers were train of at least four pulses and a frequency of 40-70 Hz at a pulse width of 1 ms. The experimental results were modeled with high fidelity by incorporating temporal synaptic effects into the computational model. Numerical analysis revealed terminal axon thickness to be the most important biophysical factor affecting threshold variability. The computational model can be used to estimate perception thresholds while understanding the mechanisms underlying the selective stimulation of small fibers. The parameters derived here are important in exploring selective stimulation between Aδ- and C-fibers for diagnosing neuropathies.
Collapse
Affiliation(s)
- Yuki Niimi
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan,*Correspondence: Akimasa Hirata,
| |
Collapse
|
11
|
Observation of nociceptive detection thresholds and cortical evoked potentials: Go/no-go versus two-interval forced choice. Atten Percept Psychophys 2022; 84:1359-1369. [PMID: 35381960 PMCID: PMC9076717 DOI: 10.3758/s13414-022-02484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Pain scientists and clinicians search for objective measures of altered nociceptive processing to study and stratify chronic pain patients. Nociceptive processing can be studied by observing a combination of nociceptive detection thresholds and evoked potentials. However, it is unknown whether the nociceptive detection threshold measured using a go-/no-go (GN) procedure can be biased by a response criterion. In this study, we compared nociceptive detection thresholds, psychometric slopes, and central evoked potentials obtained during a GN procedure with those obtained during a two-interval forced choice (2IFC) procedure to determine (1) if the nociceptive detection threshold during a GN procedure is biased by a criterion and (2) to determine if nociceptive evoked potentials observed in response to stimuli around the detection threshold are biased by a criterion. We found that the detection threshold was higher when assessed using a GN procedure in comparison with the 2IFC procedure. During a GN procedure, the average P2 component increased proportionally when averaged with respect to detection probability, but showed on-off behavior when averaged with respect to stimulus detection. During a 2IFC procedure, the average P2 component increased nonlinearly when averaged with respect to detection probability. These data suggest that nociceptive detection thresholds estimated using a GN procedure are subject to a response criterion.
Collapse
|
12
|
van den Berg B, Vanwinsen L, Jansen N, Buitenweg JR. Real-time estimation of perceptual thresholds based on the electroencephalogram using a deep neural network. J Neurosci Methods 2022; 374:109580. [DOI: 10.1016/j.jneumeth.2022.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
13
|
New diagnostic measures of oxaliplatin-induced peripheral sensory neuropathy. Cancer Treat Res Commun 2022; 31:100543. [PMID: 35255440 DOI: 10.1016/j.ctarc.2022.100543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Oxaliplatin-induced peripheral neuropathy (OIPN) is an unwanted side effect of oxaliplatin chemotherapy treatment. OIPN manifests in an acute phase that lasts a few days after injection and a persistent phase that may become chronic. Currently, there is no consensus about a clinically applicable, quantitative, and objective measure of OIPN. METHODS Seventeen patients treated with oxaliplatin containing adjuvant chemotherapy for stage III colon cancer, but otherwise healthy, were tested with six quantitative sensory tests (QST) and five large fibre perception threshold tracking (PTT) measures (quantified by, e.g., rheobase and electrotonus threshold) one hour before each of the 12 chemotherapy cycles given at two weeks' intervals. These measures were repeated at 3, 6, and 12-month follow-ups. The temporal development of OIPN assessed by the Common Terminology Criteria for Adverse Events (CTCAE) scale, QST, and PTT measures was calculated by linear regression. RESULTS The CTCAE score showed a tri-phasic increase during the treatment and remained increased during the follow-up. The vibration threshold (R = 0.25, p<0.001), the cold pain threshold (R = 0.17, p = 0.02), and the rheobase (R = 0.28, p < 0.001) increased during treatment, whereas the cold detection threshold (R=-0.16, p = 0.002) decreased. The cold pain threshold and the rheobase remained increased, and the cold detection and heat pain threshold remained decreased during follow-up. CONCLUSIONS Increased cold pain sensitivity and decreased large fibre sensitivity (increased rheobase) correlate to the persistent OIPN, whereas the CTCAE score assesses both acute and persistent OIPN. Furthermore, the novel PTT method assessed the nerve excitability changes caused by the oxaliplatin.
Collapse
|
14
|
van den Berg B, Manoochehri M, Schouten AC, van der Helm FCT, Buitenweg JR. Nociceptive Intra-epidermal Electric Stimulation Evokes Steady-State Responses in the Secondary Somatosensory Cortex. Brain Topogr 2022; 35:169-181. [PMID: 35050427 PMCID: PMC8860817 DOI: 10.1007/s10548-022-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Recent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences. Each sequence had a duration of 8.5 s, and consisted of pulses with a pulse rate between 20 and 200 Hz, which was frequency modulated with a multisine waveform of 3, 7 and 13 Hz (n = 10, 1 excluded) or 3 and 7 Hz (n = 12, 1 excluded). As a result, evoked potentials in response to stimulation onset and contralateral SSEPs at 3 and 7 Hz were observed. The SSEPs at 3 and 7 Hz had an average time delay of 137 ms and 143 ms respectively. The evoked potential in response to stimulation onset had a contralateral minimum (N1) at 115 ms and a central maximum (P2) at 300 ms. Sources for the multisine SSEP at 3 and 7 Hz were found through beamforming near the primary and secondary somatosensory cortex. Sources for the N1 were found near the primary and secondary somatosensory cortex. Sources for the N2-P2 were found near the supplementary motor area. Harmonic and intermodulation frequencies in the SSEP power spectrum remained below a detectable level and no evidence for nonlinearity of nociceptive processing, i.e. processing of peripheral firing rate into cortical evoked potentials, was found.
Collapse
Affiliation(s)
- Boudewijn van den Berg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mana Manoochehri
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA.,Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Frans C T van der Helm
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan R Buitenweg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
15
|
Hugosdottir R, Kasting M, Mørch CD, Kæseler Andersen O, Arendt-Nielsen L. Priming of central- and peripheral mechanisms with heat and cutaneous capsaicin facilitates secondary hyperalgesia to high frequency electrical stimulation. J Neurophysiol 2022; 127:651-659. [PMID: 35020531 DOI: 10.1152/jn.00154.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat/capsaicin sensitization and electrical high frequency stimulation (HFS) are well known model of secondary hyperalgesia, a phenomenon related to chronic pain conditions. This study investigated whether priming with heat/capsaicin would facilitate hyperalgesia to HFS in healthy subjects. Heat/capsaicin priming consisted of a 45 °C heat stimulation for 5 min followed by a topical capsaicin patch (4x4 cm) for 30 minutes on the volar forearm of 20 subjects. HFS (100 Hz, 5 times 1s, minimum 1.5 mA) was subsequently delivered through a transcutaneous pin electrode approximately 1.5 cm proximal to the heat/capsaicin application. Two sessions were applied in a crossover design; traditional HFS (HFS) and heat/capsaicin sensitization followed by HFS (HFS+HEAT/CAPS). Heat pain threshold (HPT), mechanical pain sensitivity (MPS) and superficial blood perfusion were assessed at baseline, after capsaicin removal, and up to 40 min after HFS. MPS was assessed with pinprick stimulation (128 mN and 256 mN) in the area adjacent to both HFS and heat/capsaicin, distal but adjacent to heat/capsaicin and in a distal control area. HPT was assessed in the area of heat/capsaicin. Higher sensitivity to 128 mN pinprick stimulation (difference from baseline and control area) was observed in the HFS+HEAT/CAPS session than in the HFS session 20 and 30 minutes after HFS. Furthermore, sensitivity was increased after HFS+HEAT/CAPS compared to after heat/capsaicin in the area adjacent to both paradigms, but not in the area distal to heat/capsaicin. Results indicate that heat/capsaicin causes priming of the central- and peripheral nervous system, which facilitates secondary mechanical hyperalgesia to HFS.
Collapse
Affiliation(s)
- Rosa Hugosdottir
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mindy Kasting
- Biomechatronics and Human-Machine Control, Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, The Netherlands
| | - Carsten Dahl Mørch
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kæseler Andersen
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center of Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
16
|
Simultaneous measurement of intra-epidermal electric detection thresholds and evoked potentials for observation of nociceptive processing following sleep deprivation. Exp Brain Res 2022; 240:631-649. [PMID: 34993590 PMCID: PMC8739349 DOI: 10.1007/s00221-021-06284-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Sleep deprivation has been shown to increase pain intensity and decrease pain thresholds in healthy subjects. In chronic pain patients, sleep impairment often worsens the perceived pain intensity. This increased pain perception is the result of altered nociceptive processing. We recently developed a method to quantify and monitor altered nociceptive processing by simultaneous tracking of psychophysical detection thresholds and recording of evoked cortical potentials during intra-epidermal electric stimulation. In this study, we assessed the sensitivity of nociceptive detection thresholds and evoked potentials to altered nociceptive processing after sleep deprivation in an exploratory study with 24 healthy male and 24 healthy female subjects. In each subject, we tracked nociceptive detection thresholds and recorded central evoked potentials in response to 180 single- and 180 double-pulse intra-epidermal electric stimuli. Results showed that the detection thresholds for single- and double-pulse stimuli and the average central evoked potential for single-pulse stimuli were significantly decreased after sleep deprivation. When analyzed separated by sex, these effects were only significant in the male population. Multivariate analysis showed that the decrease of central evoked potential was associated with a decrease of task-related evoked activity. Measurement repetition led to a decrease of the detection threshold to double-pulse stimuli in the mixed and the female population, but did not significantly affect any other outcome measures. These results suggest that simultaneous tracking of psychophysical detection thresholds and evoked potentials is a useful method to observe altered nociceptive processing after sleep deprivation, but is also sensitive to sex differences and measurement repetition.
Collapse
|
17
|
Poulsen AH, van den Berg B, Arguissain FG, Tigerholm J, Buitenweg JR, Andersen OK, Mørch CD. Novel surface electrode design for preferential activation of cutaneous nociceptors. J Neural Eng 2022; 19. [PMID: 34996054 DOI: 10.1088/1741-2552/ac4950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Objective Small area electrodes enable preferential activation of nociceptive fibers. It is debated, however, whether co-activation of large fibers still occurs for the existing electrode designs. Moreover, existing electrodes are limited to low stimulation intensities, for which behavioral and physiological responses may be considered less reliable. A recent optimization study showed that there is a potential for improving electrode performance and increase the range of possible stimulation intensities. Based on those results, the present study introduces and tests a novel planar concentric array electrode design for small fiber activation in healthy volunteers. Approach Volunteers received electrical stimulation with the planar concentric array electrode and a regular patch electrode. Perception thresholds were estimated at the beginning and the end of the experiment. Evoked cortical potentials were recorded in blocks of 30 stimuli. For the patch, stimulation intensity was set to two times perception threshold (PT), while three intensities, 2, 5, and 10 times PT, were applied with the planar concentric array electrode. Sensation quality, numerical-rating scores, and reaction times were obtained for each PT estimation and during each block of evoked potential recordings. Main results Stimulation with the patch electrode was characterized as dull, while stimulation with the planar concentric array electrode was characterized as sharp, with increased sharpness for increasing stimulus intensity. Likewise, NRS scores were higher for the planar concentric array electrode compared to the patch and increased with increasing stimulation intensity. Reaction times and ERP latencies were longer for the planar concentric array electrode compared to the patch. Significance The presented novel planar concentric array electrode is a small, non-invasive, and single-use electrode that has the potential to investigate small fiber neuropathy and pain mechanisms, as it is small fiber preferential for a wide range of stimulation intensities.
Collapse
Affiliation(s)
- Aida Hejlskov Poulsen
- Department of Health science and technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik bajers vej, 7 A1, 208, Aalborg, Nordjylland, 9220, DENMARK
| | - Boudewijn van den Berg
- University of Twente Technical Medical Centre, PO box 217, 7500 AE Enschede, The Netherlands, Enschede, 7500, NETHERLANDS
| | - Federico G Arguissain
- Department of Health Science and Technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik Bajers Vej 7A, Aalborg, 9220, DENMARK
| | - Jenny Tigerholm
- Health Science and Technology, Aalborg University, Fredrik Bajers vej 7A, Aalborg, 9220, DENMARK
| | - Jan R Buitenweg
- EWI - TST, University of Twente, PO Box 217, 7500 AE Enchende, The Netherlands, Enschende, 7500, NETHERLANDS
| | - Ole Kaeseler Andersen
- Department of Health Science and Technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik Bajers Vej 7, 9220 Aalborg, Aalborg, 9220, DENMARK
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik Bajers Vej 7 A, Aalborg, 9220, DENMARK
| |
Collapse
|
18
|
Raabe W, Walk D. Median amplitude and frequency analysis of sensory nerve responses to intraepidermal stimulation. J Neurosci Methods 2022; 365:109377. [PMID: 34634281 DOI: 10.1016/j.jneumeth.2021.109377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND In clinical practice, small myelinated sensory fibers conveying pain and other sensations, Aδ-fibers, cannot be examined with available nerve conduction study techniques. NEW METHOD Equipment available in clinical neurophysiology laboratories is used to record from human sensory nerves multiple averaged responses to non-painful stimulation of intraepidermal nerves. Ten averaged responses are analyzed in all possible pair combinations with an algorithm applied to a 0.45 ms period of amplitude and frequency (power spectrum). The median of the algorithms is compared to control data to identify potentials generated as response to intraepidermal stimulation. RESULTS Median analysis of the algorithm applied to amplitude and frequency of multiple record pairs identifies potentials with conduction velocities of Aδ-fibers. The analysis of frequency (power spectrum) adds data to the analysis of amplitude. Median analysis of multiple record pairs yields more data than analysis of one pair of alternate averages with the same algorithms. COMPARISON WITH EXISTING METHOD(S) At present, analysis of one pair of alternate average records with an algorithm is the only method to identify Aδ-fiber generated potentials. Median analysis of the same algorithm applied to the amplitude of multiple record pairs increases the number of Aδ-fiber generated potentials identified. Neither median analysis of amplitude nor frequency of multiple records pairs has ever been used for conduction studies of nerve fibers, including Aδ-fibers. CONCLUSIONS Stimulation, recording and data analysis methods used in this study can be applied in the clinical EMG laboratory to identify the conduction velocities of Aδ-fibers in human sensory nerves.
Collapse
Affiliation(s)
- W Raabe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.
| | - D Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Lütolf R, Júlio SU, Schubert M, Hubli M. Intra-epidermal evoked potentials: A promising tool for spinal disorders? Neurophysiol Clin 2021; 52:44-57. [PMID: 34953638 DOI: 10.1016/j.neucli.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To test the robustness and signal-to-noise ratio of pain-related evoked potentials following intra-epidermal electrical stimulation (IES) compared to contact heat stimulation in healthy controls, and to explore the feasibility and potential added value of IES in the diagnosis of spinal disorders. METHODS Pain-related evoked potentials induced by IES (custom-made, non-invasive, concentric triple pin electrode with steel pins protruding 1 mm from the anode, triangularly separated by 7-10 mm respectively) and contact heat stimulation were compared in 30 healthy subjects. Stimuli were applied to four different body sites. Two IES intensities, i.e., high (individually adapted to contact heat painfulness) and low (1.5 times pain threshold), were used. Additionally, a 40-year-old patient with unilateral dissociated sensory loss due to a multi-segmental syringohydromyelia was assessed comparing IES and contact heat stimulation. RESULTS Both IES and contact heat stimulation led to robust pain-related evoked potentials recorded in all healthy subjects. Low intensity IES evoked potentials (14.1-38.0 µV) had similar amplitudes as contact heat evoked potentials (11.8-32.3 µV), while pain ratings on the numeric rating scale were lower for IES (0.8-2.5, compared to 1.5-3.9 for contact heat stimulation). High intensity IES led to evoked potentials with higher signal-to-noise ratio than low intensity IES and contact heat stimulation. The patient case showed impaired pain-related evoked potentials in segments with hypoalgesia for both IES modes. IES evoked potentials were preserved, with delayed latencies, while contact heat evoked potentials were abolished. CONCLUSION IES evoked robust pain-related cortical potentials, while being less painful in healthy controls. The improved signal-to-noise ratio supports the use of IES for objective segmental testing of nociceptive processing. This was highlighted in a spinal syndrome case, where IES as well as contact heat stimulation reliably detected impaired segmental nociception.
Collapse
Affiliation(s)
- Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Sara U Júlio
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Verma N, Graham RD, Mudge J, Trevathan JK, Franke M, Shoffstall AJ, Williams J, Dalrymple AN, Fisher LE, Weber DJ, Lempka SF, Ludwig KA. Augmented Transcutaneous Stimulation Using an Injectable Electrode: A Computational Study. Front Bioeng Biotechnol 2021; 9:796042. [PMID: 34988068 PMCID: PMC8722711 DOI: 10.3389/fbioe.2021.796042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Minimally invasive neuromodulation technologies seek to marry the neural selectivity of implantable devices with the low-cost and non-invasive nature of transcutaneous electrical stimulation (TES). The Injectrode® is a needle-delivered electrode that is injected onto neural structures under image guidance. Power is then transcutaneously delivered to the Injectrode using surface electrodes. The Injectrode serves as a low-impedance conduit to guide current to the deep on-target nerve, reducing activation thresholds by an order of magnitude compared to using only surface stimulation electrodes. To minimize off-target recruitment of cutaneous fibers, the energy transfer efficiency from the surface electrodes to the Injectrode must be optimized. TES energy is transferred to the Injectrode through both capacitive and resistive mechanisms. Electrostatic finite element models generally used in TES research consider only the resistive means of energy transfer by defining tissue conductivities. Here, we present an electroquasistatic model, taking into consideration both the conductivity and permittivity of tissue, to understand transcutaneous power delivery to the Injectrode. The model was validated with measurements taken from (n = 4) swine cadavers. We used the validated model to investigate system and anatomic parameters that influence the coupling efficiency of the Injectrode energy delivery system. Our work suggests the relevance of electroquasistatic models to account for capacitive charge transfer mechanisms when studying TES, particularly when high-frequency voltage components are present, such as those used for voltage-controlled pulses and sinusoidal nerve blocks.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jonah Mudge
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | | | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Justin Williams
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Ashley N. Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lee E. Fisher
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Douglas J. Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
21
|
van den Berg B, Berfelo T, Verhoeven EMH, Krabbenbos IP, Buitenweg JR. Combining Psychophysical and EEG Biomarkers for Improved Observation of Altered Nociceptive Processing in Failed Back Surgery Syndrome. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:174-177. [PMID: 34891265 DOI: 10.1109/embc46164.2021.9630906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diagnosis and stratification of chronic pain patients is difficult due to a lack of sensitive biomarkers for altered nociceptive and pain processing. Recent developments enabled to preferentially stimulate epidermal nerve fibers and simultaneously quantify the psychophysical detection probability and neurophysiological EEG responses. In this work, we study whether using one or a combination of both outcome measures could aid in the observation of altered nociceptive processing in chronic pain. A set of features was extracted from data from a total of 66 measurements on 16 failed back surgery syndrome patients and 17 healthy controls. We assessed how well each feature discriminates both groups. Subsequently, we used a random forest classifier to study whether psychophysical features, EEG features or a combination can improve the classification accuracy. It was found that a classification accuracy of 0.77 can be achieved with psychophysical features, while a classification accuracy of 0.65 was achieved using only EEG features.Clinical Relevance-This study shows which combined features of nociceptive detection behavior and evoked EEG responses are most sensitive and specific to altered nociception in failed back surgery syndrome.
Collapse
|
22
|
Jansen N, Dollen R, van den Berg B, Berfelo T, Krabbenbos IP, Buitenweg JR. Combined Evaluation of Nociceptive Detection Thresholds and Evoked Potentials during Conditioned Pain Modulation: A Feasibility Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1427-1430. [PMID: 34891553 DOI: 10.1109/embc46164.2021.9630411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deficient top-down inhibitory control via diffuse noxious inhibitory control (DNIC) is a mechanism known to be responsible for the maintenance and development in several chronic pain syndromes. Experimentally, DNIC is often induced by conditioned pain modulation (CPM) paradigms such as a Cold Pressor Test (CPT). Recently, a method called the NDT-EP method has been developed with the aim to evaluate the nociceptive function, which it does via simultaneous tracking of nociceptive detection thresholds (NDT) and evoked potentials (EP). It remains to be investigated whether we can evaluate DNIC via the NDT-EP method. In this study, we take the first step to investigate this by evaluating the feasibility to combine the NDT-EP method with a 7 minutes CPT. In total 20 participants of a wide age-range were measured before, during, and after a CPT. All except 1 participant were able to complete the protocol, and enough stimulus-response pairs could be obtained for psychophysical as well as electrophysiological evaluation. Preliminary analysis of the NDT's and EP's showed results in line with earlier research such as a higher threshold for nociceptive stimuli and a lower EP amplitudes. Several NDT's of mostly elderly people (59±16 years), however, exceeded the maximum applicable stimulus strength during (7/20) or after (9/20) CPT and consequently had to be excluded from the analysis. To what extent this is a consequence of the CPT or other factors such as strong habituation associated more with elderly people, is subject to further investigation. In conclusion, the results of this study show that with the present protocol, it is feasible to combine the NDT-EP method with a CPM paradigm in almost all subjects, but that the NDT data of mostly older subjects could not be properly analyzed. Further directions for research and improvements are outlined.
Collapse
|
23
|
Blake DT. Encephalographic studies of central nociceptive activation just got a bit easier. Clin Neurophysiol 2021; 132:2890-2891. [PMID: 34583884 DOI: 10.1016/j.clinph.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 11/15/2022]
|
24
|
Mehesz E, Karoui H, Strutton PH, Hughes SW. Exposure to an Immersive Virtual Reality Environment can Modulate Perceptual Correlates of Endogenous Analgesia and Central Sensitization in Healthy Volunteers. THE JOURNAL OF PAIN 2021; 22:707-714. [PMID: 33465506 DOI: 10.1016/j.jpain.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
Virtual reality (VR) has been shown to produce analgesic effects during different experimental and clinical pain states. Despite this, the top-down mechanisms are still poorly understood. In this study, we examined the influence of both a real and sham (ie, the same images in 2D) immersive arctic VR environment on conditioned pain modulation (CPM) and in a human surrogate model of central sensitization in 38 healthy volunteers. CPM and acute heat pain thresholds were assessed before and during VR/sham exposure in the absence of any sensitization. In a follow-on study, we used the cutaneous high frequency stimulation model of central sensitization and measured changes in mechanical pain sensitivity in an area of heterotopic sensitization before and during VR/sham exposure. There was an increase in CPM efficiency during the VR condition compared to baseline (P < .01). In the sham condition, there was a decrease in CPM efficiency compared to baseline (P < .01) and the real VR condition (P < .001). Neither real nor sham VR had any effect on pain ratings reported during the conditioning period or on heat pain threshold. There was also an attenuation of mechanical pain sensitivity during the VR condition indicating a lower sensitivity compared to sham (P < .05). We conclude that exposure to an immersive VR environment has no effect over acute pain thresholds but can modulate dynamic CPM responses and mechanical hypersensitivity in healthy volunteers. PERSPECTIVE: This study has demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These results suggest that virtual reality could provide a novel mechanism-driven analgesic strategy in patients with altered central pain processing.
Collapse
Affiliation(s)
- Erzsebet Mehesz
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hajer Karoui
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Paul H Strutton
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sam W Hughes
- The Pain Neuroplasticity and Modulation Laboratory, Brain Research and Imaging Centre (BRIC), School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
25
|
Nonlinear increase of pain in distance-based and area-based spatial summation. Pain 2021; 162:1771-1780. [PMID: 33449502 DOI: 10.1097/j.pain.0000000000002186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT When nociceptive stimulation affects a larger body area, pain increases. This effect is called spatial summation of pain (SSp). The aim of this study was to describe SSp as a function of the size or distance of a stimulated area(s) and to test how this function is shaped by the intensity and SSp test paradigm. Thirty-one healthy volunteers participated in a within-subject experiment. Participants were exposed to area-based and distanced-based SSp. For area-based SSp, electrocutaneous noxious stimuli were applied by up to 5 electrodes (5 areas) forming a line-like pattern; for distance-based SSp, the same position and lengths of stimuli were used but only 2 electrodes were stimulated. Each paradigm was repeated using pain of low, moderate, and high intensity. It was found that the pattern of pain intensity followed a logarithmic (power) rather than a linear function. The dynamics of the pain increase were significantly different across pain intensities, with more summation occurring when pain was perceived as low. Results indicated that area-based SSp is more painful than distance-based SSp when low and moderate but not when high pain intensity is induced. Presented findings have important implications for all studies in which the spatial dimension of pain is measured. When the area or separation between nociceptive stimulation increases, pain does not increase linearly and the pattern of the pain increase is a result of the interaction between intensity and the number of nociceptive sites. A power function should be considered when predicting the size of a nociceptive source.
Collapse
|
26
|
Verma N, Mudge JD, Kasole M, Chen RC, Blanz SL, Trevathan JK, Lovett EG, Williams JC, Ludwig KA. Auricular Vagus Neuromodulation-A Systematic Review on Quality of Evidence and Clinical Effects. Front Neurosci 2021; 15:664740. [PMID: 33994937 PMCID: PMC8120162 DOI: 10.3389/fnins.2021.664740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication. Methods: Using the Cochrane Risk of Bias tool we conducted a systematic review of auricular vagus nerve stimulation (aVNS) randomized controlled trials (RCTs) to identify the factors that led to these conflicting results. The majority of aVNS studies were assessed as having "some" or "high" risk of bias, which makes it difficult to interpret their results in a broader context. Results: There is evidence of a modest decrease in heart rate during higher stimulation dosages, sometimes at above the level of sensory discomfort. Findings on heart rate variability conflict between studies and are hindered by trial design, including inappropriate washout periods, and multiple methods used to quantify heart rate variability. There is early-stage evidence to suggest aVNS may reduce circulating levels and endotoxin-induced levels of inflammatory markers. Studies on epilepsy reached primary endpoints similar to previous RCTs testing implantable vagus nerve stimulation therapy. Preliminary evidence shows that aVNS ameliorated pathological pain but not evoked pain. Discussion: Based on results of the Cochrane analysis we list common improvements for the reporting of results, which can be implemented immediately to improve the quality of evidence. In the long term, existing data from aVNS studies and salient lessons from drug development highlight the need for direct measures of local neural target engagement. Direct measures of neural activity around the electrode will provide data for the optimization of electrode design, placement, and stimulation waveform parameters to improve on-target engagement and minimize off-target activation. Furthermore, direct measures of target engagement, along with consistent evaluation of blinding success, must be used to improve the design of controls-a major source of concern identified in the Cochrane analysis. The need for direct measures of neural target engagement and consistent evaluation of blinding success is applicable to the development of other paresthesia-inducing neuromodulation therapies and their control designs.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Jonah D. Mudge
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Maïsha Kasole
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Rex C. Chen
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Stephan L. Blanz
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | | | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
27
|
Tanaka S, Gomez-Tames J, Inui K, Ueno S, Hirata A, Wasaka T. Synaptic Effect of Aδ-Fibers by Pulse-Train Electrical Stimulation. Front Neurosci 2021; 15:643448. [PMID: 33981196 PMCID: PMC8107290 DOI: 10.3389/fnins.2021.643448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Electrical stimulation of specific small fibers (Aδ- and C-fibers) is used in basic studies on nociception and neuropathic pain and to diagnose neuropathies. For selective stimulation of small fibers, the optimal stimulation waveform parameters are an important aspect together with the study of electrode design. However, determining an optimal stimulation condition is challenging, as it requires the characterization of the response of the small fibers to electrical stimulation. The perception thresholds are generally characterized using single-pulse stimulation based on the strength-duration curve. However, this does not account for the temporal effects of the different waveforms used in practical applications. In this study, we designed an experiment to characterize the effects of multiple pulse stimulation and proposed a computational model that considers electrostimulation of fibers and synaptic effects in a multiscale model. The measurements of perception thresholds showed that the pulse dependency of the threshold was an exponential decay with a maximum reduction of 55%. In addition, the frequency dependence of the threshold showed a U-shaped response with a reduction of 25% at 30 Hz. Moreover, the computational model explained the synaptic effects, which were also confirmed by evoked potential recordings. This study further characterized the activation of small fibers and clarified the synaptic effects, demonstrating the importance of waveform selection.
Collapse
Affiliation(s)
- Shota Tanaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Koji Inui
- Department of Functioning and Disability, Aichi Developmental Disability Center, Institute for Developmental Research, Kasugai, Japan.,Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Shoogo Ueno
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.,Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.,Frontier Research Institute for Information Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
28
|
van den Berg B, Manoochehri M, Kasting M, Schouten AC, van der Helm FCT, Buitenweg JR. Multisine frequency modulation of intra-epidermal electric pulse sequences: A novel tool to study nociceptive processing. J Neurosci Methods 2021; 353:109106. [PMID: 33626370 DOI: 10.1016/j.jneumeth.2021.109106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
A sustained sensory stimulus with a periodic variation of intensity creates an electrophysiological brain response at associated frequencies, referred to as the steady-state evoked potential (SSEP). The SSEPs elicited by the periodic stimulation of nociceptors in the skin may represent activity of a brain network that is primarily involved in nociceptive processing. Exploring the behavior of this network could lead to valuable insights regarding the pathway from nociceptive stimulus to pain perception. We present a method to directly modulate the pulse rate of nociceptive afferents in the skin with a multisine waveform through intra-epidermal electric stimulation. The technique was demonstrated in healthy volunteers. Each subject was stimulated using a pulse sequence modulated by a multisine waveform of 3, 7 and 13 Hz. The EEG was analyzed for the presence of the base frequencies and associated (sub)harmonics. Topographies showed significant central and contralateral SSEP responses at 3, 7 and 13 Hz in respectively 7, 4 and 3 out of the 9 participants included for analysis. As such, we found that intra-epidermal stimulation with a multisine frequency modulated pulse sequence can generate nociceptive SSEPs. The possibility to stimulate the nociceptive system using multisine frequency modulated pulses offers novel opportunities to study the temporal dynamics of nociceptive processing.
Collapse
Affiliation(s)
- Boudewijn van den Berg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| | - Mana Manoochehri
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - Mindy Kasting
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - Alfred C Schouten
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA; Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Frans C T van der Helm
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan R Buitenweg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
29
|
Observation of Nociceptive Processing: Effect of Intra-Epidermal Electric Stimulus Properties on Detection Probability and Evoked Potentials. Brain Topogr 2021; 34:139-153. [PMID: 33459925 PMCID: PMC7892744 DOI: 10.1007/s10548-020-00816-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/25/2020] [Indexed: 12/30/2022]
Abstract
Monitoring nociceptive processing is a current challenge due to a lack of objective measures. Recently, we developed a method for simultaneous tracking of psychophysical detection probability and brain evoked potentials in response to intra-epidermal stimulation. An exploratory investigation showed that we could quantify nociceptive system behavior by estimating the effect of stimulus properties on the evoked potential (EP). The goal in this work was to accurately measure nociceptive system behavior using this method in a large group of healthy subjects to identify the locations and latencies of EP components and the effect of single- and double-pulse stimuli with an inter-pulse interval of 10 or 40 ms on these EP components and detection probability. First, we observed the effect of filter settings and channel selection on the EP. Subsequently, we compared statistical models to assess correlation of EP and detection probability with stimulus properties, and quantified the effect of stimulus properties on both outcome measures through linear mixed regression. We observed lateral and central EP components in response to intra-epidermal stimulation. Detection probability and central EP components were positively correlated to the amplitude of each pulse, regardless of the inter-pulse interval, and negatively correlated to the trial number. Both central and lateral EP components also showed strong correlation with detection. These results show that both the observed EP and the detection probability reflect the various steps of processing of a nociceptive stimulus, including peripheral nerve fiber recruitment, central synaptic summation, and habituation to a repeated stimulus.
Collapse
|
30
|
Tanaka S, Gomez-Tames J, Wasaka T, Inui K, Ueno S, Hirata A. Electrical Characterisation of Aδ-Fibres Based on Human in vivo Electrostimulation Threshold. Front Neurosci 2021; 14:588056. [PMID: 33584171 PMCID: PMC7873976 DOI: 10.3389/fnins.2020.588056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Electrical stimulation of small fibres is gaining attention in the diagnosis of peripheral neuropathies, such as diabetes mellitus, and pain research. However, it is still challenging to characterise the electrical characteristics of axons in small fibres (Aδ and C fibres). In particular, in vitro measurement for human Aδ-fibre is difficult due to the presence of myelin and ethical reason. In this study, we investigate the in vivo electrical characteristics of the human Aδ-fibre to derive strength-duration (S-D) curves from the measurement. The Aδ-fibres are stimulated using coaxial planar electrodes with intraepidermal needle tip. For human volunteer experiments, the S-D curve of Aδ-fibre is obtained in terms of injected electrical current. With the computational analysis, the standard deviation of the S-D curve is mostly attributed to the thickness of the stratum corneum and depth of the needle tip, in addition to the fibre thickness. Then, we derive electrical parameters of the axon in the Aδ-fibre based on a conventional fibre model. The parameters derived here would be important in exploring the optimal stimulation condition of Aδ-fibres.
Collapse
Affiliation(s)
- Shota Tanaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Shoogo Ueno
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
- Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
- Frontier Research Institute for Information Science, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
31
|
Poulsen AH, Tigerholm J, Andersen OK, Mørch CD. Increased preferential activation of small cutaneous nerve fibers by optimization of electrode design parameters. J Neural Eng 2020; 18. [PMID: 33291093 DOI: 10.1088/1741-2552/abd1c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/08/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical preferential activation of small nociceptive fibers may be achieved with the use of specialized small area electrodes, however, the existing electrodes are limited to low stimulation intensities. As existing electrodes have been developed empirically, the present study aimed to use computational modeling and optimization techniques to investigate if changes in electrode design parameters could improve the preferential activation of small fibers. APPROACH Two finite element models; one of a planar concentric and one of an intra-epidermal electrode were combined with two multi-compartmental nerve fiber models of an Aδ-fiber and an Aβ-fiber. These two-step hybrid models were used for the optimization of four electrode parameters; anode area, anode-cathode distance, cathode area, and cathode protrusion. Optimization was performed using a gradient-free bounded Nelder-Mead algorithm, to maximize the current activation threshold ratio between the Aβ-fiber model and the Aδ-fiber model. MAIN RESULTS All electrode parameters were optimal at their lower bound, except the cathode protrusion, which was optimal a few micrometers above the location of the Aδ-fiber model. A small cathode area is essential for producing a high current density in the epidermal skin layer enabling activation of small fibers, while a small anode area and anode-cathode distance are important for the minimization of the current spread to deeper tissues, making it less likely to activate large fibers. Combining each of the optimized electrode parameters improved the preferential activation of small fibers in comparison to existing electrodes, by increasing the activation threshold ratio between the two nerve fiber types. The maximum increase in the activation threshold ratio was 289% and 595% for the intra-epidermal and planar concentric design, respectively. SIGNIFICANCE The present study showed that electrical preferential small fiber activation can be improved by electrode design. Additionally, the results may be used for the production of an electrode that could potentially be used for clinical assessment of small fiber neuropathy.
Collapse
Affiliation(s)
- Aida Hejlskov Poulsen
- Department of Health science and technology, Aalborg Universitet, Fredrik bajers vej 7A, Aalborg, Nordjylland, 9220, DENMARK
| | - Jenny Tigerholm
- Health Science and Technology, Aalborg Universitet, Fredrik bajers vej 7A,, Aalborg, Nordjylland, 9220, DENMARK
| | - Ole Kaeseler Andersen
- Department of Health Science and Technology, Aalborg Universitet, Fredrik bajers vej 7A,, Aalborg, Nordjylland, 9220, DENMARK
| | | |
Collapse
|