1
|
Khateeb K, Bloch J, Zhou J, Rahimi M, Griggs DJ, Kharazia VN, Le MN, Wang RK, Yazdan-Shahmorad A. A versatile toolbox for studying cortical physiology in primates. CELL REPORTS METHODS 2022; 2:100183. [PMID: 35445205 PMCID: PMC9017216 DOI: 10.1016/j.crmeth.2022.100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Lesioning and neurophysiological studies have facilitated the elucidation of cortical functions and mechanisms of functional recovery following injury. Clinical translation of such studies is contingent on their employment in non-human primates (NHPs), yet tools for monitoring and modulating cortical physiology are incompatible with conventional lesioning techniques. To address these challenges, we developed a toolbox validated in seven macaques. We introduce the photothrombotic method for inducing focal cortical lesions, a quantitative model for designing experiment-specific lesion profiles and optical coherence tomography angiography (OCTA) for large-scale (~5 cm2) monitoring of vascular dynamics. We integrate these tools with our electrocorticographic array for large-scale monitoring of neural dynamics and testing stimulation-based interventions. Advantageously, this versatile toolbox can be incorporated into established chronic cranial windows. By combining optical and electrophysiological techniques in the NHP cortex, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, integrate physiological and behavioral findings, and develop neurorehabilitative treatments. MOTIVATION The primate neocortex encodes for complex functions and behaviors, the physiologies of which are yet to be fully understood. Such an understanding in both healthy and diseased states can be crucial for the development of effective neurorehabilitative strategies. However, there is a lack of a comprehensive and adaptable set of tools that enables the study of multiple physiological phenomena in healthy and injured brains. Therefore, we developed a toolbox with the capability to induce targeted cortical lesions, monitor dynamics of underlying cortical microvasculature, and record and stimulate neural activity. With this toolbox, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, test stimulation-based interventions, and integrate physiological and behavioral findings.
Collapse
Affiliation(s)
- Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Julien Bloch
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Mona Rahimi
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Viktor N. Kharazia
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minh N. Le
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington Medicine, Seattle, WA 98195, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|