1
|
Ly K, Italiano ML, Shivdasani MN, Tsai D, Zhang JY, Jiang C, Lovell NH, Dokos S, Guo T. Virtual Human Retina: Simulating Neural Signalling, Degeneration, and Responses to Electrical Stimulation. Brain Stimul 2025:S1935-861X(25)00015-4. [PMID: 39827982 DOI: 10.1016/j.brs.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Current brain-based visual prostheses pose significant challenges impeding adoption such as the necessarily complex surgeries and occurrence of more substantial side effects due to the sensitivity of the brain. This has led to much effort toward vision restoration being focused on the more approachable part of the brain - the retina. Here we introduce a novel, parameterized simulation platform that enables study of human retinal degeneration and optimization of stimulation strategies. The platform bears immense potential for patient-specific tailoring and serves to enhance artificial vision solutions for individuals with visual impairments. MATERIAL AND METHOD Our virtual retina is developed using the software package, NEURON. This virtual retina platform supports large-scale simulations of over 10,000 neurons whilst upholding strong biological plausibility with multiple important visual pathways and detailed network properties. The comprehensive three-dimensional model includes photoreceptors, horizontal cells, bipolar cells, amacrine cells, and midget and parasol retinal ganglion cells, with comprehensive network connectivity across various eccentricities (1 mm to 5 mm from the fovea) in the human retina. The model is constructed using electrophysiology, immunohistology, and optical coherence tomography imaging data from healthy and degenerate human retinas. We validated our model by replicating numerous experimental observations from human and primate retina, with a particular focus on retinal degeneration. RESULT We simulated interactions between diseased retinas and state-of-the-art retinal implants, shedding light on the limitations of commercial retinal prostheses. Our results suggested that appropriate stimulation settings with intraretinal prototype devices could leverage network-mediated activation to achieve activation mosaics more alike that of the retina's response to natural light, promoting the prospect of more naturalistic vision. Our study additionally highlights the importance of controlling inhibitory circuits in the retinal network to induce functionally relevant retinal activity. CONCLUSION This study demonstrates the potential of this software package and highlights its utility as a valuable tool for engineers, scientists, and clinicians in the design and optimisation of retinal stimulation devices for both research and educational applications.
Collapse
Affiliation(s)
- Keith Ly
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia; Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA.
| | - Michael L Italiano
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW 2052, Australia
| | - David Tsai
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia; School of Electrical Engineering & Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | - Jia-Yi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, China; Department of Ophthalmology, Eye & ENT Hospital, Fudan University, China.
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, China; Department of Ophthalmology, Eye & ENT Hospital, Fudan University, China
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Song X, Guo T, Ma S, Zhou F, Tian J, Liu Z, Liu J, Li H, Chen Y, Chai X, Li L. Spatially Selective Retinal Ganglion Cell Activation Using Low Invasive Extraocular Temporal Interference Stimulation. Int J Neural Syst 2025; 35:2450066. [PMID: 39318031 DOI: 10.1142/s0129065724500667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Conventional retinal implants involve complex surgical procedures and require invasive implantation. Temporal Interference Stimulation (TIS) has achieved noninvasive and focused stimulation of deep brain regions by delivering high-frequency currents with small frequency differences on multiple electrodes. In this study, we conducted in silico investigations to evaluate extraocular TIS's potential as a novel visual restoration approach. Different from the previously published retinal TIS model, the new model of extraocular TIS incorporated a biophysically detailed retinal ganglion cell (RGC) population, enabling a more accurate simulation of retinal outputs under electrical stimulation. Using this improved model, we made the following major discoveries: (1) the maximum value of TIS envelope electric potential ([Formula: see text] showed a strong correlation with TIS-induced RGC activation; (2) the preferred stimulating/return electrode (SE/RE) locations to achieve focalized TIS were predicted; (3) the performance of extraocular TIS was better than same-frequency sinusoidal stimulation (SSS) in terms of lower RGC threshold and more focused RGC activation; (4) the optimal stimulation parameters to achieve lower threshold and focused activation were identified; and (5) spatial selectivity of TIS could be improved by integrating current steering strategy and reducing electrode size. This study provides insights into the feasibility and effectiveness of a low-invasive stimulation approach in enhancing vision restoration.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Saidong Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiaxin Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhengyang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiao Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Yang R, Zhao P, Wang L, Feng C, Peng C, Wang Z, Zhang Y, Shen M, Shi K, Weng S, Dong C, Zeng F, Zhang T, Chen X, Wang S, Wang Y, Luo Y, Chen Q, Chen Y, Jiang C, Jia S, Yu Z, Liu J, Wang F, Jiang S, Xu W, Li L, Wang G, Mo X, Zheng G, Chen A, Zhou X, Jiang C, Yuan Y, Yan B, Zhang J. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat Biomed Eng 2024; 8:1018-1039. [PMID: 37996614 DOI: 10.1038/s41551-023-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Retinal prostheses could restore image-forming vision in conditions of photoreceptor degeneration. However, contrast sensitivity and visual acuity are often insufficient. Here we report the performance, in mice and monkeys with induced photoreceptor degeneration, of subretinally implanted gold-nanoparticle-coated titania nanowire arrays providing a spatial resolution of 77.5 μm and a temporal resolution of 3.92 Hz in ex vivo retinas (as determined by patch-clamp recording of retinal ganglion cells). In blind mice, the arrays allowed for the detection of drifting gratings and flashing objects at light-intensity thresholds of 15.70-18.09 μW mm-2, and offered visual acuities of 0.3-0.4 cycles per degree, as determined by recordings of visually evoked potentials and optomotor-response tests. In monkeys, the arrays were stable for 54 weeks, allowed for the detection of a 10-μW mm-2 beam of light (0.5° in beam angle) in visually guided saccade experiments, and induced plastic changes in the primary visual cortex, as indicated by long-term in vivo calcium imaging. Nanomaterials as artificial photoreceptors may ameliorate visual deficits in patients with photoreceptor degeneration.
Collapse
Affiliation(s)
- Ruyi Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Peng Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Zhexuan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yingying Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kaiwen Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunqiong Dong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Tianyun Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Xingdong Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, P. R. China
| | - Yiheng Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuanyuan Luo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Qingyuan Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shanshan Jia
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Zhaofei Yu
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Jian Liu
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Fei Wang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Su Jiang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Wendong Xu
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, P.R. China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xiaofen Mo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Xingtao Zhou
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P.R. China.
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
4
|
Lee JI, Werginz P, Kameneva T, Im M, Fried SI. Membrane depolarization mediates both the inhibition of neural activity and cell-type-differences in response to high-frequency stimulation. Commun Biol 2024; 7:734. [PMID: 38890481 PMCID: PMC11189419 DOI: 10.1038/s42003-024-06359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Neuromodulation using high frequency (>1 kHz) electric stimulation (HFS) enables preferential activation or inhibition of individual neural types, offering the possibility of more effective treatments across a broad spectrum of neurological diseases. To improve effectiveness, it is important to better understand the mechanisms governing activation and inhibition with HFS so that selectivity can be optimized. In this study, we measure the membrane potential (Vm) and spiking responses of ON and OFF α-sustained retinal ganglion cells (RGCs) to a wide range of stimulus frequencies (100-2500 Hz) and amplitudes (10-100 µA). Our findings indicate that HFS induces shifts in Vm, with both the strength and polarity of the shifts dependent on the stimulus conditions. Spiking responses in each cell directly correlate with the shifts in Vm, where strong depolarization leads to spiking suppression. Comparisons between the two cell types reveal that ON cells are more depolarized by a given amplitude of HFS than OFF cells-this sensitivity difference enables the selective targeting. Computational modeling indicates that ion-channel dynamics largely account for the shifts in Vm, suggesting that a better understanding of the differences in ion-channel properties across cell types may improve the selectivity and ultimately, enhance HFS-based neurostimulation strategies.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Paul Werginz
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Tatiana Kameneva
- School of Science, Computing, and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Shelley I Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Boston VA Healthcare System, Rehabilitation, Research and Development, Boston, MA, USA
| |
Collapse
|
5
|
Lohler P, Albert A, Erbsloh A, Nruthyathi, Muller F, Seidl K. A Cell-Type Selective Stimulation and Recording System for Retinal Ganglion Cells. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:498-510. [PMID: 38096095 DOI: 10.1109/tbcas.2023.3342465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Future retinal implants will require a stimulation selectivity between different sub-types of Retinal Ganglion Cells (RGCs) to evoke natural perceptions rather than phosphenes in patients. To achieve this, a cell-type specific stimulation pipeline is required that identifies target RGC sub-types from recorded input images and extracts the specific stimulation parameters to activate this cell-type selectively. Promising biological experiments showed that ON-/OFF- sustained/transient RGCs could be selectively activated by modulating repetition rate and amplitude of an electrical stimulation current in the kilohertz range. This research presents a 42 channel current controlled stimulation and recording system on chip (SoC) with parameter input from a real time target RGC selection algorithm. The SoC is able to stimulate retinal tissue with sinusoidal frequencies higher than 1 kHz at amplitudes of up to 200 μA at a supply voltage of 1.8 V. It also includes tunable recording units with an integrated action potential detection pipeline that are able to amplify signals between 1 Hz and 50 kHz. The required area of one stimulator is 0.0071 mm2, while one recording unit consumes an area of 0.0092 mm2. The application of sinusoidal stimulation currents in the kilohertz range towards retinal tissue leads to a suppressive response of only certain RGC sub-types that has not been oberved before, using electrical stimulation. Because this response is very similar to the natural light response of RGCs, this stimulation approach can lead to a more genuine visual perception for patients using retinal implants.
Collapse
|
6
|
Amos G, Ihle SJ, Clément BF, Duru J, Girardin S, Maurer B, Delipinar T, Vörös J, Ruff T. Engineering an in vitro retinothalamic nerve model. Front Neurosci 2024; 18:1396966. [PMID: 38835836 PMCID: PMC11148348 DOI: 10.3389/fnins.2024.1396966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding the retinogeniculate pathway in vitro can offer insights into its development and potential for future therapeutic applications. This study presents a Polydimethylsiloxane-based two-chamber system with axon guidance channels, designed to replicate unidirectional retinogeniculate signal transmission in vitro. Using embryonic rat retinas, we developed a model where retinal spheroids innervate thalamic targets through up to 6 mm long microfluidic channels. Using a combination of electrical stimulation and functional calcium imaging we assessed how channel length and electrical stimulation frequency affects thalamic target response. In the presented model we integrated up to 20 identical functional retinothalamic neural networks aligned on a single transparent microelectrode array, enhancing the robustness and quality of recorded functional data. We found that network integrity depends on channel length, with 0.5-2 mm channels maintaining over 90% morphological and 50% functional integrity. A reduced network integrity was recorded in longer channels. The results indicate a notable reduction in forward spike propagation in channels longer than 4 mm. Additionally, spike conduction fidelity decreased with increasing channel length. Yet, stimulation-induced thalamic target activity remained unaffected by channel length. Finally, the study found that a sustained thalamic calcium response could be elicited with stimulation frequencies up to 31 Hz, with higher frequencies leading to transient responses. In conclusion, this study presents a high-throughput platform that demonstrates how channel length affects retina to brain network formation and signal transmission in vitro.
Collapse
Affiliation(s)
- Giulia Amos
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Blandine F Clément
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Sophie Girardin
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Benedikt Maurer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Tuğçe Delipinar
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
8
|
Muralidharan M, Guo T, Tsai D, Lee JI, Fried S, Dokos S, Morley JW, Lovell NH, Shivdasani MN. Neural activity of retinal ganglion cells under continuous, dynamically-modulated high frequency electrical stimulation. J Neural Eng 2024; 21:015001. [PMID: 38290151 DOI: 10.1088/1741-2552/ad2404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Objective.Current retinal prosthetics are limited in their ability to precisely control firing patterns of functionally distinct retinal ganglion cell (RGC) types. The aim of this study was to characterise RGC responses to continuous, kilohertz-frequency-varying stimulation to assess its utility in controlling RGC activity.Approach.We usedin vitropatch-clamp experiments to assess electrically-evoked ON and OFF RGC responses to frequency-varying pulse train sequences. In each sequence, the stimulation amplitude was kept constant while the stimulation frequency (0.5-10 kHz) was changed every 40 ms, in either a linearly increasing, linearly decreasing or randomised manner. The stimulation amplitude across sequences was increased from 10 to 300µA.Main results.We found that continuous stimulation without rest periods caused complex and irreproducible stimulus-response relationships, primarily due to strong stimulus-induced response adaptation and influence of the preceding stimulus frequency on the response to a subsequent stimulus. In addition, ON and OFF populations showed different sensitivities to continuous, frequency-varying pulse trains, with OFF cells generally exhibiting more dependency on frequency changes within a sequence. Finally, the ability to maintain spiking behaviour to continuous stimulation in RGCs significantly reduced over longer stimulation durations irrespective of the frequency order.Significance.This study represents an important step in advancing and understanding the utility of continuous frequency modulation in controlling functionally distinct RGCs. Our results indicate that continuous, kHz-frequency-varying stimulation sequences provide very limited control of RGC firing patterns due to inter-dependency between adjacent frequencies and generally, different RGC types do not display different frequency preferences under such stimulation conditions. For future stimulation strategies using kHz frequencies, careful consideration must be given to design appropriate pauses in stimulation, stimulation frequency order and the length of continuous stimulation duration.
Collapse
Affiliation(s)
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - David Tsai
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- School of Electrical Engineering & Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | - Jae-Ik Lee
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Shelley Fried
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - John W Morley
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (iHealthE), UNSW, Sydney, NSW 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (iHealthE), UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Ly K, Lovell NH, Muralidharan M, Italiano ML, Tsai D, Shivdasani MN, Guo T, Dokos S. The direct influence of retinal degeneration on electrical stimulation efficacy: Significant implications for retinal prostheses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083376 DOI: 10.1109/embc40787.2023.10340724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Photoreceptor loss and inner retinal network remodeling severely impacts the ability of retinal prosthetic devices to create artificial vision. We developed a computational model of a degenerating retina based on rodent data and tested its response to retinal electrical stimulation. This model includes detailed network connectivity and diverse neural intrinsic properties, capable of exploring how the degenerated retina influences the performance of electrical stimulation during the degeneration process. Our model suggests the possibility of quantitatively modulating retinal ON and OFF pathways between phase II and III of retinal degeneration without requiring any differences between ON and OFF RGC intrinsic cellular properties. The model also provided insights about how remodeling events influence stage-dependent differential electrical responses of ON and OFF pathways.Clinical Relevance-This data-driven model can guide future development of retinal prostheses and stimulation strategies that may benefit patients at different stages of retinal disease progression, particularly in the early and mid-stages, thus increasing their global acceptance.
Collapse
|
10
|
Zha M, Muralidharan M, Ly K, Guo T, Von Wegner F, Shabani H, Hosseinzadeh Z, Lovell NH, Rathbun DL, Shivdasani MN. Probing the Contribution of Vertical Processing Layers of the Retina to White-Noise Electrical Stimulation Responses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083111 DOI: 10.1109/embc40787.2023.10340816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Optimal stimulus parameters for epiretinal prostheses have been investigated by analyzing retinal ganglion cell (RGC) spiking responses to white-noise electrical stimulation, through a spike-triggered average (STA) analysis technique. However, it is currently unknown as to activation of which retinal cells contribute to features of the STA. We conducted whole-cell patch clamping recordings in ON and OFF RGCs in response to white-noise epiretinal electrical stimulation by using different inhibitors of synaptic transmission in a healthy retina. An mGluR6 agonist, L-AP4, was firstly used to selectively block the output of photoreceptors (PRs) to ON bipolar cells (BCs). We subsequently fully blocked all synaptic inputs to RGCs using a combination of pharmacological agents. Our data shows that PRs dominate the ability of ON RGCs to integrate electrical pulses and form a unique STA shape, while BCs do not contribute in any way. In addition, our results demonstrate that the ability of OFF RGCs to integrate pulses is consistently impaired after blocking the PR to ON BC pathway. We hypothesise that the mechanisms underlying this co-effect are related to the narrow field AII amacrine cells connecting ON and OFF pathways.Clinical Relevance-Recent retinal studies recorded mirror-inverted STAs in ON and OFF retinal pathways, thus raising the possibility of designing a stimulation approach that can differentially activate ON and OFF pathways with electrical stimulation. However, the detailed contribution of three major retinal cell layers in forming characteristic STAs is still unclear. It is of great clinical relevance to investigate the isolated contribution of PRs to the electrically driven STA since PRs progressively degenerate in the course of retinal disease.
Collapse
|
11
|
Guo T, Chang YC, Li L, Dokos S, Li L. Editorial: Advances in bioelectronics and stimulation strategies for next generation neuroprosthetics. Front Neurosci 2023; 16:1116900. [PMID: 36704005 PMCID: PMC9872720 DOI: 10.3389/fnins.2022.1116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Yao-chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States,Medtronic PLC, Minneapolis, MN, United States
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Liming Li ✉
| |
Collapse
|
12
|
Lin MH, Lin JF, Yu MC, Wu SN, Wu CL, Cho HY. Characterization in Potent Modulation on Voltage-Gated Na + Current Exerted by Deltamethrin, a Pyrethroid Insecticide. Int J Mol Sci 2022; 23:ijms232314733. [PMID: 36499059 PMCID: PMC9737322 DOI: 10.3390/ijms232314733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Deltamethrin (DLT) is a type-II pyrethroid ester insecticide used in agricultural and domestic applications as well as in public health. However, transmembrane ionic channels perturbed by this compound remain largely unclear, although the agent is thought to alter the gating characteristics of voltage-gated Na+ (NaV) channel current. In this study, we reappraised whether and how it and other related compounds can make any further modifications on voltage-gated Na+ current (INa) in pituitary tumor (GH3) cells. Cell exposure to DLT produced a differential and dose-dependent stimulation of peak (transient, INa(T)) or sustained (late, INa(L)) INa; consequently, the EC50 value required for DLT-stimulated INa(T) or INa(L) was determined to be 11.2 or 2.5 μM, respectively. However, neither the fast nor slow component in the inactivation time constant of INa(T) activated by short depolarizing pulse was changed with the DLT presence; conversely, tefluthrin (Tef), a type-I pyrethroid insecticide, can accentuate INa with a slowing in inactivation time course of the current. The INa(L) augmented by DLT was attenuated by further application of either dapagliflozin (Dapa) or amiloride, but not by chlorotoxin. During pulse train (PT) stimulation, with the Tef or DLT presence, the cumulative inhibition of INa(T) became slowed; moreover, following PT stimuli, a large tail current with a slowly recovering process was observed. Alternatively, during rapid depolarizing pulse, the amplitude of INa(L) and tail INa (INa(Tail)) for each depolarizing pulse became progressively increased by adding DLT, not by Tef. The recovery time constant following PT stimulation with continued presence of Tef or DLT was shortened by further addition of Dapa. The voltage-dependent hysteresis (Hys(V)) of persistent INa was differentially augmented by Tef or DLT. Taken together, the magnitude, gating, frequency dependence, as well as Hys(V) behavior of INa exerted by the presence of DLT or Tef might exert a synergistic impact on varying functional activities of excitable cells in culture or in vivo.
Collapse
Affiliation(s)
- Mao-Hsun Lin
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan
| | - Jen-Feng Lin
- Department of Emergency Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 701, Taiwan
- Department of Post-Baccalaureate Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: 886-6-2362780
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| |
Collapse
|
13
|
Chang YC, Ahmed U, Jayaprakash N, Mughrabi I, Lin Q, Wu YC, Gerber M, Abbas A, Daytz A, Gabalski AH, Ashville J, Dokos S, Rieth L, Datta-Chaudhuri T, Tracey KJ, Guo T, Al-Abed Y, Zanos S. kHz-frequency electrical stimulation selectively activates small, unmyelinated vagus afferents. Brain Stimul 2022; 15:1389-1404. [PMID: 36241025 PMCID: PMC10164362 DOI: 10.1016/j.brs.2022.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Vagal reflexes regulate homeostasis in visceral organs and systems through afferent and efferent neurons and nerve fibers. Small, unmyelinated, C-type afferents comprise over 80% of fibers in the vagus and form the sensory arc of autonomic reflexes of the gut, lungs, heart and vessels and the immune system. Selective bioelectronic activation of C-afferents could be used to mechanistically study and treat diseases of peripheral organs in which vagal reflexes are involved, but it has not been achieved. METHODS We stimulated the vagus in rats and mice using trains of kHz-frequency stimuli. Stimulation effects were assessed using neuronal c-Fos expression, physiological and nerve fiber responses, optogenetic and computational methods. RESULTS Intermittent kHz stimulation for 30 min activates specific motor and, preferentially, sensory vagus neurons in the brainstem. At sufficiently high frequencies (>5 kHz) and at intensities within a specific range (7-10 times activation threshold, T, in rats; 15-25 × T in mice), C-afferents are activated, whereas larger, A- and B-fibers, are blocked. This was determined by measuring fiber-specific acute physiological responses to kHz stimulus trains, and by assessing fiber excitability around kHz stimulus trains through compound action potentials evoked by probing pulses. Aspects of selective activation of C-afferents are explained in computational models of nerve fibers by how fiber size and myelin shape the response of sodium channels to kHz-frequency stimuli. CONCLUSION kHz stimulation is a neuromodulation strategy to robustly and selectively activate vagal C-afferents implicated in physiological homeostasis and disease, over larger vagal fibers.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Qihang Lin
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yi-Chen Wu
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Michael Gerber
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Arielle H Gabalski
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Jason Ashville
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Loren Rieth
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, 26506, United States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
14
|
Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of Neural Plasticity in Retinal Prosthesis. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 36251317 DOI: 10.1167/iovs.63.11.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Retinal degenerative diseases such as retinitis pigmentosa cause a progressive loss of photoreceptors that eventually prevents the affected person from perceiving visual sensations. The absence of a visual input produces a neural rewiring cascade that propagates along the visual system. This remodeling occurs first within the retina. Then, subsequent neuroplastic changes take place at higher visual centers in the brain, produced by either the abnormal neural encoding of the visual inputs delivered by the diseased retina or as the result of an adaptation to visual deprivation. While retinal implants can activate the surviving retinal neurons by delivering electric current, the unselective activation patterns of the different neural populations that exist in the retinal layers differ substantially from those in physiologic vision. Therefore, artificially induced neural patterns are being delivered to a brain that has already undergone important neural reconnections. Whether or not the modulation of this neural rewiring can improve the performance for retinal prostheses remains a critical question whose answer may be the enabler of improved functional artificial vision and more personalized neurorehabilitation strategies.
Collapse
Affiliation(s)
- Daniel Caravaca-Rodriguez
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain
| | - Susana P Gaytan
- Department of Physiology, Universidad de Sevilla, Sevilla, Spain
| | - Gregg J Suaning
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| | - Alejandro Barriga-Rivera
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain.,School of Biomedical Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Yunzab M, Soto-Breceda A, Maturana M, Kirkby S, Slattery M, Newgreen A, Meffin H, Kameneva T, Burkitt AN, Ibbotson M, Tong W. Preferential modulation of individual retinal ganglion cells by electrical stimulation. J Neural Eng 2022; 19. [PMID: 35917811 DOI: 10.1088/1741-2552/ac861f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Retinal prostheses have been able to recover partial vision in blind patients with retinal degeneration by electrically stimulating surviving cells in the retina, such as retinal ganglion cells (RGCs), but the restored vision is limited. This is partly due to non-preferential stimulation of all RGCs near a single stimulating electrode, which include cells that conflict in their response properties and their contribution to the vision process. Our study proposes a stimulation strategy to preferentially stimulate individual RGCs based on their temporal electrical receptive fields (tERFs). APPROACH We recorded the responses of RGCs using whole-cell current-clamp and demonstrated the stimulation strategy, first using intracellular stimulation, then via extracellular stimulation. MAIN RESULTS We successfully reconstructed the tERFs according to the RGC response to Gaussian white noise current stimulation. The characteristics of the tERFs were extracted and compared according to the morphological and light response types of the cells. By re-delivering stimulation trains that are composed of the tERFs obtained from different cells, we could target individual RGCs as the cells showed lower activation thresholds to their own tERFs. SIGNIFICANCE This proposed stimulation strategy implemented in the next generation of recording and stimulating retinal prostheses may improve the quality of artificial vision.
Collapse
Affiliation(s)
- Molis Yunzab
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Artemio Soto-Breceda
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Matias Maturana
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Stephanie Kirkby
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Maximilian Slattery
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Anton Newgreen
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Hamish Meffin
- Biomedical Engineering, The University of Melbourne, Grattan Street, Melbourne, Victoria, 3010, AUSTRALIA
| | - Tatiana Kameneva
- School of Science, Engineering, and Computing Technologies, Swinburne University of Technology, School of Science, Engineering, and Computing Technologies, Swinburne University of Technology, Hawthorn, Victoria, 3122, AUSTRALIA
| | - Anthony N Burkitt
- Department of Biomedical Engineering, University of Melbourne, University of Melbourne, Parkville, Victoria, 3010, AUSTRALIA
| | - Michael Ibbotson
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Wei Tong
- University of Melbourne, School of Physics, University of Melbourne, Parkville, Melbourne, Victoria, 3010, AUSTRALIA
| |
Collapse
|
16
|
Italiano ML, Guo T, Lovell NH, Tsai D. Improving the spatial resolution of artificial vision using midget retinal ganglion cell populations modelled at the human fovea. J Neural Eng 2022; 19. [PMID: 35609556 DOI: 10.1088/1741-2552/ac72c2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Retinal prostheses seek to create artificial vision by stimulating surviving retinal neurons of patients with profound vision impairment. Notwithstanding tremendous research efforts, the performance of all implants tested to date has remained rudimentary, incapable of overcoming the threshold for legal blindness. To maximize the perceptual efficacy of retinal prostheses, a device must be capable of controlling retinal neurons with greater spatiotemporal precision. Most studies of retinal stimulation were derived from either non-primate species or the peripheral primate retina. We investigated if artificial stimulation could leverage the high spatial resolution afforded by the neural substrates at the primate fovea and surrounding regions to achieve improved percept qualities. APPROACH We began by developing a new computational model capable of generating anatomically accurate retinal ganglion cell (RGC) populations within the human central retina. Next, multiple RGC populations across the central retina were stimulated in-silico to compare clinical and recently proposed neurostimulation configurations based on their ability to improve perceptual efficacy and reduce activation thresholds. MAIN RESULTS Our model uniquely upholds eccentricity-dependent characteristics such as RGC density and dendritic field diameter, whilst incorporating anatomically accurate features such as axon projection and three-dimensional RGC layering, features often forgone in favor of reduced computational complexity. Following epiretinal stimulation, the RGCs in our model produced response patterns in shapes akin to the complex percepts reported in clinical trials. Our results also demonstrated that even within the neuron-dense central retina, epiretinal stimulation using a multi-return hexapolar electrode arrangement could reliably achieve spatially focused RGC activation and could achieve single-cell excitation in 74% of all tested locations. SIGNIFICANCE This study establishes an anatomically accurate three-dimensional model of the human central retina and demonstrates the potential for an epiretinal hexapolar configuration to achieve consistent, spatially confined retinal responses, even within the neuron-dense foveal region. Our results promote the prospect and optimization of higher spatial resolution in future epiretinal implants.
Collapse
Affiliation(s)
- Michael Lewis Italiano
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - David Tsai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| |
Collapse
|
17
|
Song X, Qiu S, Shivdasani MN, Zhou F, Liu Z, Ma S, Chai X, Chen Y, Cai X, Guo T, Li L. An in-silico analysis of electrically-evoked responses of midget and parasol retinal ganglion cells in different retinal regions. J Neural Eng 2022; 19. [PMID: 35255486 DOI: 10.1088/1741-2552/ac5b18] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Visual outcomes provided by present retinal prostheses that primarily target retinal ganglion cells (RGCs) through epiretinal stimulation remain rudimentary, partly due to the limited knowledge of retinal responses under electrical stimulation. Better understanding of how different retinal regions can be quantitatively controlled with high spatial accuracy, will be beneficial to the design of micro-electrode arrays (MEAs) and stimulation strategies for next-generation wide-view, high-resolution epiretinal implants. METHODS A computational model was developed to assess neural activity at different eccentricities (2 mm and 5 mm) within the human retina. This model included midget and parasol RGCs with anatomically accurate cell distribution and cell-specific morphological information. We then performed in silico investigations of region-specific RGC responses to epiretinal electrical stimulation using varied electrode sizes (5 µm - 210 µm diameter), emulating both commercialized retinal implants and recently-developed prototype devices. RESULTS Our model of epiretinal stimulation predicted RGC population excitation analogous to the complex percepts reported in human subjects. Following this, our simulations suggest that midget and parasol RGCs have characteristic regional differences in excitation under preferred electrode sizes. Relatively central (2 mm) regions demonstrated higher number of excited RGCs but lower overall activated receptive field (RF) areas under the same stimulus amplitudes (two-way ANOVA, p < 0.05). Furthermore, the activated RGC numbers per unit active RF area (number-RF ratio) were significantly higher in central than in peripheral regions, and higher in the midget than in the parasol population under all tested electrode sizes (two-way ANOVA, p < 0.05). Our simulations also suggested that smaller electrodes exhibit a higher range of controllable stimulation parameters to achieve pre-defined performance of RGC excitation. ..
Collapse
Affiliation(s)
- Xiaoyu Song
- , Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Shirong Qiu
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Lower Ground, Samuels Building (F25), Kensington, New South Wales, 2052, AUSTRALIA
| | - Feng Zhou
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Zhengyang Liu
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Saidong Ma
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, 200240, CHINA
| | - Yao Chen
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200040, Shanghai, 200240, CHINA
| | - Xuan Cai
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, Shanghai, 200233, CHINA
| | - Tianruo Guo
- the University of New South Wales, Lower Ground, Samuels Building (F25), Sydney, 2052, AUSTRALIA
| | - Liming Li
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| |
Collapse
|
18
|
Raghuram V, Werginz P, Fried SI, Timko BP. Morphological Factors that Underlie Neural Sensitivity to Stimulation in the Retina. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100069. [PMID: 35399546 PMCID: PMC8993153 DOI: 10.1002/anbr.202100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Retinal prostheses are a promising therapeutic intervention for patients afflicted by outer retinal degenerative diseases like retinitis pigmentosa and age-related macular degeneration. While significant advances in the development of retinal implants have been made, the quality of vision elicited by these devices remains largely sub-optimal. The variability in the responses produced by retinal devices is most likely due to the differences between the natural cell type-specific signaling that occur in the healthy retina vs. the non-specific activation of multiple cell types arising from artificial stimulation. In order to replicate these natural signaling patterns, stimulation strategies must be capable of preferentially activating specific RGC types. To design more selective stimulation strategies, a better understanding of the morphological factors that underlie the sensitivity to prosthetic stimulation must be developed. This review will focus on the role that different anatomical components play in driving the direct activation of RGCs by extracellular stimulation. Briefly, it will (1) characterize the variability in morphological properties of α-RGCs, (2) detail the influence of morphology on the direct activation of RGCs by electric stimulation, and (3) describe some of the potential biophysical mechanisms that could explain differences in activation thresholds and electrically evoked responses between RGC types.
Collapse
Affiliation(s)
- Vineeth Raghuram
- Boston VA Healthcare System, 150 S Huntington Ave, Boston, MA 02130, USA
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Paul Werginz
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Shelley I. Fried
- Boston VA Healthcare System, 150 S Huntington Ave, Boston, MA 02130, USA
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Brian P. Timko
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
19
|
Corna A, Ramesh P, Jetter F, Lee MJ, Macke JH, Zeck G. Discrimination of simple objects decoded from the output of retinal ganglion cells upon sinusoidal electrical stimulation. J Neural Eng 2021; 18. [PMID: 34049288 DOI: 10.1088/1741-2552/ac0679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/28/2021] [Indexed: 11/12/2022]
Abstract
Objective. Most neuroprosthetic implants employ pulsatile square-wave electrical stimuli, which are significantly different from physiological inter-neuronal communication. In case of retinal neuroprosthetics, which use a certain type of pulsatile stimuli, reliable object and contrast discrimination by implanted blind patients remained challenging. Here we investigated to what extent simple objects can be discriminated from the output of retinal ganglion cells (RGCs) upon sinusoidal stimulation.Approach. Spatially confined objects were formed by different combinations of 1024 stimulating microelectrodes. The RGC activity in theex vivoretina of photoreceptor-degenerated mouse, of healthy mouse or of primate was recorded simultaneously using an interleaved recording microelectrode array implemented in a CMOS-based chip.Main results. We report that application of sinusoidal electrical stimuli (40 Hz) in epiretinal configuration instantaneously and reliably modulates the RGC activity in spatially confined areas at low stimulation threshold charge densities (40 nC mm-2). Classification of overlapping but spatially displaced objects (1° separation) was achieved by distinct spiking activity of selected RGCs. A classifier (regularized logistic regression) discriminated spatially displaced objects (size: 5.5° or 3.5°) with high accuracy (90% or 62%). Stimulation with low artificial contrast (10%) encoded by different stimulus amplitudes generated RGC activity, which was classified with an accuracy of 80% for large objects (5.5°).Significance. We conclude that time-continuous smooth-wave stimulation provides robust, localized neuronal activation in photoreceptor-degenerated retina, which may enable future artificial vision at high temporal, spatial and contrast resolution.
Collapse
Affiliation(s)
- Andrea Corna
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany.,Biomedical Electronics and Systems, EMCE Institute, TU Wien, Wien, Austria
| | - Poornima Ramesh
- Computational Neuroengineering, Technical University München, München, Germany.,Machine Learning in Science, University of Tübingen, Tübingen, Germany
| | - Florian Jetter
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
| | - Meng-Jung Lee
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
| | - Jakob H Macke
- Computational Neuroengineering, Technical University München, München, Germany.,Machine Learning in Science, University of Tübingen, Tübingen, Germany.,MPI for Intelligent Systems, Tübingen, Germany
| | - Günther Zeck
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Biomedical Electronics and Systems, EMCE Institute, TU Wien, Wien, Austria
| |
Collapse
|
20
|
Song X, Guo T, Shivdasani MN, Dokos S, Lovell NH, Li X, Qiu S, Li T, Zheng S, Li L. Creation of virtual channels in the retina using synchronous and asynchronous stimulation - a modelling study. J Neural Eng 2020; 17. [PMID: 33086210 DOI: 10.1088/1741-2552/abc3a9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/21/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Implantable retinal prostheses aim to provide artificial vision to those suffering from retinal degenerative diseases by electrically stimulating the remaining retinal neurons using a multi-electrode array. The spatial resolution of these devices can be improved by creation of so-called virtual channels (VCs) that are commonly achieved through synchronized stimulation of multiple electrodes. It is largely unclear though if VCs can be created using asynchronous stimulation, which was the primary aim of this study. APPROACH A computational model of multi-layered retina and epi-retinal dual-electrode stimulation was developed to simulate the neural activity of populations of retinal ganglion cells (RGCs) using the VC strategy under both synchronous and asynchronous stimulation conditions. MAIN RESULTS Our simulation suggests that VCs can be created using asynchronous stimulation. VC performance under both synchronous and asynchronous stimulation conditions can be improved by optimizing stimulation parameters such as current intensity, current ratio (α) between two electrodes, electrode spacing and the stimulation waveform. In particular, two VC performance measures; (1) linear displacement of the centroid of RGC activation, and (2) the RGC activation size consistency as a function of different current ratios α, have comparable performance under asynchronous and synchronous stimulation with appropriately selected stimulation parameters. SIGNIFICANCE Our findings support the possibility of creating VCs in the retina under both synchronous and asynchronous stimulation conditions. The results provide theoretical evidence for future retinal prosthesis designs with higher spatial resolution and power efficiency whilst reducing the number of current sources required to achieve these outcomes.
Collapse
Affiliation(s)
- Xiaoyu Song
- , Shanghai Jiao Tong University, Shanghai, 200240, CHINA
| | - Tianruo Guo
- GSBME, UNSW, Sydney, New South Wales, 2052, AUSTRALIA
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Lower Ground, Samuels Building (F25), Kensington, New South Wales, AUSTRALIA
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wales, Sydney, New South Wales, 2052, AUSTRALIA
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Sydney, 2052, AUSTRALIA
| | - Xinxin Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Shirong Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Tong Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Shiwei Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, CHINA
| |
Collapse
|
21
|
Barriga-Rivera A, Guo T, Hayashida Y, Suaning GJ. Editorial: A Conversation With the Brain: Can We Speak Its Language? Front Neurosci 2020; 14:794. [PMID: 32922253 PMCID: PMC7456930 DOI: 10.3389/fnins.2020.00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Alejandro Barriga-Rivera
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
- Department of Applied Physics III, University of Seville, Seville, Spain
- *Correspondence: Alejandro Barriga-Rivera
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Yuki Hayashida
- Graduate School of Engineering, Osaka University, Osaka, Japan
- Graduate School of Engineering, Mie University, Mie, Japan
| | - Gregg J. Suaning
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|