1
|
Ferrero L, Soriano-Segura P, Navarro J, Jones O, Ortiz M, Iáñez E, Azorín JM, Contreras-Vidal JL. Brain-machine interface based on deep learning to control asynchronously a lower-limb robotic exoskeleton: a case-of-study. J Neuroeng Rehabil 2024; 21:48. [PMID: 38581031 PMCID: PMC10996198 DOI: 10.1186/s12984-024-01342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND This research focused on the development of a motor imagery (MI) based brain-machine interface (BMI) using deep learning algorithms to control a lower-limb robotic exoskeleton. The study aimed to overcome the limitations of traditional BMI approaches by leveraging the advantages of deep learning, such as automated feature extraction and transfer learning. The experimental protocol to evaluate the BMI was designed as asynchronous, allowing subjects to perform mental tasks at their own will. METHODS A total of five healthy able-bodied subjects were enrolled in this study to participate in a series of experimental sessions. The brain signals from two of these sessions were used to develop a generic deep learning model through transfer learning. Subsequently, this model was fine-tuned during the remaining sessions and subjected to evaluation. Three distinct deep learning approaches were compared: one that did not undergo fine-tuning, another that fine-tuned all layers of the model, and a third one that fine-tuned only the last three layers. The evaluation phase involved the exclusive closed-loop control of the exoskeleton device by the participants' neural activity using the second deep learning approach for the decoding. RESULTS The three deep learning approaches were assessed in comparison to an approach based on spatial features that was trained for each subject and experimental session, demonstrating their superior performance. Interestingly, the deep learning approach without fine-tuning achieved comparable performance to the features-based approach, indicating that a generic model trained on data from different individuals and previous sessions can yield similar efficacy. Among the three deep learning approaches compared, fine-tuning all layer weights demonstrated the highest performance. CONCLUSION This research represents an initial stride toward future calibration-free methods. Despite the efforts to diminish calibration time by leveraging data from other subjects, complete elimination proved unattainable. The study's discoveries hold notable significance for advancing calibration-free approaches, offering the promise of minimizing the need for training trials. Furthermore, the experimental evaluation protocol employed in this study aimed to replicate real-life scenarios, granting participants a higher degree of autonomy in decision-making regarding actions such as walking or stopping gait.
Collapse
Affiliation(s)
- Laura Ferrero
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain.
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain.
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain.
- NSF IUCRC BRAIN, University of Houston, Houston, USA.
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA.
| | - Paula Soriano-Segura
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - Jacobo Navarro
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- International Affiliate NSF IUCRC BRAIN Site, Tecnológico de Monterrey, Monterrey, Mexico
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| | - Oscar Jones
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| | - Mario Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - José M Azorín
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
- Valencian Graduate School and Research Network of Artificial Intelligence-valgrAI, Valencia, Spain
| | - José L Contreras-Vidal
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| |
Collapse
|
2
|
Chaddad A, Wu Y, Kateb R, Bouridane A. Electroencephalography Signal Processing: A Comprehensive Review and Analysis of Methods and Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:6434. [PMID: 37514728 PMCID: PMC10385593 DOI: 10.3390/s23146434] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The electroencephalography (EEG) signal is a noninvasive and complex signal that has numerous applications in biomedical fields, including sleep and the brain-computer interface. Given its complexity, researchers have proposed several advanced preprocessing and feature extraction methods to analyze EEG signals. In this study, we analyze a comprehensive review of numerous articles related to EEG signal processing. We searched the major scientific and engineering databases and summarized the results of our findings. Our survey encompassed the entire process of EEG signal processing, from acquisition and pretreatment (denoising) to feature extraction, classification, and application. We present a detailed discussion and comparison of various methods and techniques used for EEG signal processing. Additionally, we identify the current limitations of these techniques and analyze their future development trends. We conclude by offering some suggestions for future research in the field of EEG signal processing.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China
- The Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - Yihang Wu
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China
| | - Reem Kateb
- College of Computer Science and Engineering, Taibah University, Madinah 41477, Saudi Arabia
| | - Ahmed Bouridane
- Centre for Data Analytics and Cybersecurity, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Yu M, Peterson MR, Cherukuri V, Hehnly C, Mbabazi-Kabachelor E, Mulondo R, Kaaya BN, Broach JR, Schiff SJ, Monga V. Infection diagnosis in hydrocephalus CT images: a domain enriched attention learning approach. J Neural Eng 2023; 20:10.1088/1741-2552/acd9ee. [PMID: 37253355 PMCID: PMC11099590 DOI: 10.1088/1741-2552/acd9ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
Objective. Hydrocephalus is the leading indication for pediatric neurosurgical care worldwide. Identification of postinfectious hydrocephalus (PIH) verses non-postinfectious hydrocephalus, as well as the pathogen involved in PIH is crucial for developing an appropriate treatment plan. Accurate identification requires clinical diagnosis by neuroscientists and microbiological analysis, which are time-consuming and expensive. In this study, we develop a domain enriched AI method for computerized tomography (CT)-based infection diagnosis in hydrocephalic imagery. State-of-the-art (SOTA) convolutional neural network (CNN) approaches form an attractive neural engineering solution for addressing this problem as pathogen-specific features need discovery. Yet black-box deep networks often need unrealistic abundant training data and are not easily interpreted.Approach. In this paper, a novel brain attention regularizer is proposed, which encourages the CNN to put more focus inside brain regions in its feature extraction and decision making. Our approach is then extended to a hybrid 2D/3D network that mines inter-slice information. A new strategy of regularization is also designed for enabling collaboration between 2D and 3D branches.Main results. Our proposed method achieves SOTA results on a CURE Children's Hospital of Uganda dataset with an accuracy of 95.8% in hydrocephalus classification and 84% in pathogen classification. Statistical analysis is performed to demonstrate that our proposed methods obtain significant improvements over the existing SOTA alternatives.Significance. Such attention regularized learning has particularly pronounced benefits in regimes where training data may be limited, thereby enhancing generalizability. To the best of our knowledge, our findings are unique among early efforts in interpretable AI-based models for classification of hydrocephalus and underlying pathogen using CT scans.
Collapse
Affiliation(s)
- Mingzhao Yu
- Department of Electrical Engineering, the Pennsylvania State University, University Park, PA 16801, United States of America
- Center for Neural Engineering, the Pennsylvania State University, University Park, PA 16801, United States of America
| | - Mallory R Peterson
- Center for Neural Engineering, the Pennsylvania State University, University Park, PA 16801, United States of America
| | - Venkateswararao Cherukuri
- Department of Electrical Engineering, the Pennsylvania State University, University Park, PA 16801, United States of America
- Center for Neural Engineering, the Pennsylvania State University, University Park, PA 16801, United States of America
| | - Christine Hehnly
- College of Medicine, the Pennsylvania State University, University Park, PA 16801, United States of America
| | | | | | | | - James R Broach
- College of Medicine, the Pennsylvania State University, University Park, PA 16801, United States of America
| | - Steven J Schiff
- Department of Neurosurgery, Yale University, New Haven, CT 06510, United States of America
| | - Vishal Monga
- Department of Electrical Engineering, the Pennsylvania State University, University Park, PA 16801, United States of America
| |
Collapse
|
4
|
Safder SNUH, Akram MU, Dar MN, Khan AA, Khawaja SG, Subhani AR, Niazi IK, Gul S. Analysis of EEG signals using deep learning to highlight effects of vibration-based therapy on brain. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Zhang X, Li Y, Du J, Zhao R, Xu K, Zhang L, She Y. Feature Pyramid Networks and Long Short-Term Memory for EEG Feature Map-Based Emotion Recognition. SENSORS (BASEL, SWITZERLAND) 2023; 23:1622. [PMID: 36772661 PMCID: PMC9921369 DOI: 10.3390/s23031622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The original EEG data collected are the 1D sequence, which ignores spatial topology information; Feature Pyramid Networks (FPN) is better at small dimension target detection and insufficient feature extraction in the scale transformation than CNN. We propose a method of FPN and Long Short-Term Memory (FPN-LSTM) for EEG feature map-based emotion recognition. According to the spatial arrangement of brain electrodes, the Azimuth Equidistant Projection (AEP) is employed to generate the 2D EEG map, which preserves the spatial topology information; then, the average power, variance power, and standard deviation power of three frequency bands (α, β, and γ) are extracted as the feature data for the EEG feature map. BiCubic interpolation is employed to interpolate the blank pixel among the electrodes; the three frequency bands EEG feature maps are used as the G, R, and B channels to generate EEG feature maps. Then, we put forward the idea of distributing the weight proportion for channels, assign large weight to strong emotion correlation channels (AF3, F3, F7, FC5, and T7), and assign small weight to the others; the proposed FPN-LSTM is used on EEG feature maps for emotion recognition. The experiment results show that the proposed method can achieve Value and Arousal recognition rates of 90.05% and 90.84%, respectively.
Collapse
Affiliation(s)
- Xiaodan Zhang
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Yige Li
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Jinxiang Du
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Rui Zhao
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Kemeng Xu
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Lu Zhang
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710060, China
| | - Yichong She
- School of Life Sciences, Xidian University, Xi’an 710126, China
| |
Collapse
|
6
|
Wang J, Ge X, Shi Y, Sun M, Gong Q, Wang H, Huang W. Dual-Modal Information Bottleneck Network for Seizure Detection. Int J Neural Syst 2023; 33:2250061. [PMID: 36599663 DOI: 10.1142/s0129065722500617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In recent years, deep learning has shown very competitive performance in seizure detection. However, most of the currently used methods either convert electroencephalogram (EEG) signals into spectral images and employ 2D-CNNs, or split the one-dimensional (1D) features of EEG signals into many segments and employ 1D-CNNs. Moreover, these investigations are further constrained by the absence of consideration for temporal links between time series segments or spectrogram images. Therefore, we propose a Dual-Modal Information Bottleneck (Dual-modal IB) network for EEG seizure detection. The network extracts EEG features from both time series and spectrogram dimensions, allowing information from different modalities to pass through the Dual-modal IB, requiring the model to gather and condense the most pertinent information in each modality and only share what is necessary. Specifically, we make full use of the information shared between the two modality representations to obtain key information for seizure detection and to remove irrelevant feature between the two modalities. In addition, to explore the intrinsic temporal dependencies, we further introduce a bidirectional long-short-term memory (BiLSTM) for Dual-modal IB model, which is used to model the temporal relationships between the information after each modality is extracted by convolutional neural network (CNN). For CHB-MIT dataset, the proposed framework can achieve an average segment-based sensitivity of 97.42%, specificity of 99.32%, accuracy of 98.29%, and an average event-based sensitivity of 96.02%, false detection rate (FDR) of 0.70/h. We release our code at https://github.com/LLLL1021/Dual-modal-IB.
Collapse
Affiliation(s)
- Jiale Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yunfeng Shi
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Mengxue Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Qingtao Gong
- Ulsan Ship and Ocean College, Ludong University, Yantai 264025, P. R. China
| | - Haipeng Wang
- Institute of Information Fusion, Naval, Aviation University, Yantai 264001, P. R. China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
7
|
Mattiev J, Sajovic J, Drevenšek G, Rogelj P. Assessment of Model Accuracy in Eyes Open and Closed EEG Data: Effect of Data Pre-Processing and Validation Methods. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010042. [PMID: 36671614 PMCID: PMC9854523 DOI: 10.3390/bioengineering10010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Eyes open and eyes closed data is often used to validate novel human brain activity classification methods. The cross-validation of models trained on minimally preprocessed data is frequently utilized, regardless of electroencephalography data comprised of data resulting from muscle activity and environmental noise, affecting classification accuracy. Moreover, electroencephalography data of a single subject is often divided into smaller parts, due to limited availability of large datasets. The most frequently used method for model validation is cross-validation, even though the results may be affected by overfitting to the specifics of brain activity of limited subjects. To test the effects of preprocessing and classifier validation on classification accuracy, we tested fourteen classification algorithms implemented in WEKA and MATLAB, tested on comprehensively and simply preprocessed electroencephalography data. Hold-out and cross-validation were used to compare the classification accuracy of eyes open and closed data. The data of 50 subjects, with four minutes of data with eyes closed and open each was used. The algorithms trained on simply preprocessed data were superior to the ones trained on comprehensively preprocessed data in cross-validation testing. The reverse was true when hold-out accuracy was examined. Significant increases in hold-out accuracy were observed if the data of different subjects was not strictly separated between the test and training datasets, showing the presence of overfitting. The results show that comprehensive data preprocessing can be advantageous for subject invariant classification, while higher subject-specific accuracy can be attained with simple preprocessing. Researchers should thus state the final intended use of their classifier.
Collapse
Affiliation(s)
- Jamolbek Mattiev
- Department of Information Technologies, Urgench State University, Khamid Alimdjan 14, Urgench 220100, Uzbekistan
- Correspondence:
| | - Jakob Sajovic
- Department of Orthodontics, University Medical Centre Ljubljana, Hrvatski trg 6, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Gorazd Drevenšek
- Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| |
Collapse
|
8
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
9
|
Robust graph learning with graph convolutional network. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
A Virtual Reality and Online Learning Immersion Experience Evaluation Model Based on SVM and Wearable Recordings. ELECTRONICS 2022. [DOI: 10.3390/electronics11091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increasing development in the field of biosensing technologies makes it feasible to monitor students’ physiological signals in natural learning scenarios. With the rise of mobile learning, educators are attaching greater importance to the learning immersion experience of students, especially with the global background of COVID-19. However, traditional methods, such as questionnaires and scales, to evaluate the learning immersion experience are greatly influenced by individuals’ subjective factors. Herein, our research aims to explore the relationship and mechanism between human physiological recordings and learning immersion experiences to eliminate subjectivity as much as possible. We collected electroencephalogram and photoplethysmographic signals, as well as self-reports on the immersive experience of thirty-seven college students during virtual reality and online learning to form the fundamental feature set. Then, we proposed an evaluation model based on a support vector machine and got a precision accuracy of 89.72%. Our research results provide evidence supporting the possibility of predicting students’ learning immersion experience by their EEGs and PPGs.
Collapse
|