1
|
Pfeffer MA, Ling SSH, Wong JKW. Exploring the frontier: Transformer-based models in EEG signal analysis for brain-computer interfaces. Comput Biol Med 2024; 178:108705. [PMID: 38865781 DOI: 10.1016/j.compbiomed.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/01/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
This review systematically explores the application of transformer-based models in EEG signal processing and brain-computer interface (BCI) development, with a distinct focus on ensuring methodological rigour and adhering to empirical validations within the existing literature. By examining various transformer architectures, such as the Temporal Spatial Transformer Network (TSTN) and EEG Conformer, this review delineates their capabilities in mitigating challenges intrinsic to EEG data, such as noise and artifacts, and their subsequent implications on decoding and classification accuracies across disparate mental tasks. The analytical scope extends to a meticulous examination of attention mechanisms within transformer models, delineating their role in illuminating critical temporal and spatial EEG features and facilitating interpretability in model decision-making processes. The discourse additionally encapsulates emerging works that substantiate the efficacy of transformer models in noise reduction of EEG signals and diversifying applications beyond the conventional motor imagery paradigm. Furthermore, this review elucidates evident gaps and propounds exploratory avenues in the applications of pre-trained transformers in EEG analysis and the potential expansion into real-time and multi-task BCI applications. Collectively, this review distils extant knowledge, navigates through the empirical findings, and puts forward a structured synthesis, thereby serving as a conduit for informed future research endeavours in transformer-enhanced, EEG-based BCI systems.
Collapse
Affiliation(s)
- Maximilian Achim Pfeffer
- Faculty of Engineering and Information Technology, University of Technology Sydney, CB11 81-113, Broadway, Ultimo, 2007, New South Wales, Australia.
| | - Steve Sai Ho Ling
- Faculty of Engineering and Information Technology, University of Technology Sydney, CB11 81-113, Broadway, Ultimo, 2007, New South Wales, Australia.
| | - Johnny Kwok Wai Wong
- Faculty of Design, Architecture and Building, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia.
| |
Collapse
|
2
|
Song J, Zhai Q, Wang C, Liu J. EEGGAN-Net: enhancing EEG signal classification through data augmentation. Front Hum Neurosci 2024; 18:1430086. [PMID: 39010893 PMCID: PMC11247432 DOI: 10.3389/fnhum.2024.1430086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Emerging brain-computer interface (BCI) technology holds promising potential to enhance the quality of life for individuals with disabilities. Nevertheless, the constrained accuracy of electroencephalography (EEG) signal classification poses numerous hurdles in real-world applications. Methods In response to this predicament, we introduce a novel EEG signal classification model termed EEGGAN-Net, leveraging a data augmentation framework. By incorporating Conditional Generative Adversarial Network (CGAN) data augmentation, a cropped training strategy and a Squeeze-and-Excitation (SE) attention mechanism, EEGGAN-Net adeptly assimilates crucial features from the data, consequently enhancing classification efficacy across diverse BCI tasks. Results The EEGGAN-Net model exhibits notable performance metrics on the BCI Competition IV-2a and IV-2b datasets. Specifically, it achieves a classification accuracy of 81.3% with a kappa value of 0.751 on the IV-2a dataset, and a classification accuracy of 90.3% with a kappa value of 0.79 on the IV-2b dataset. Remarkably, these results surpass those of four other CNN-based decoding models. Conclusions In conclusion, the amalgamation of data augmentation and attention mechanisms proves instrumental in acquiring generalized features from EEG signals, ultimately elevating the overall proficiency of EEG signal classification.
Collapse
Affiliation(s)
- Jiuxiang Song
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Zhai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, China
- Shaoxing Institute of Advanced Research, Wuhan University of Technology, Shaoxing, Zhejiang, China
| | - Chuang Wang
- Xiangyang Auto Vocational Technical College, Intelligent Manufacturing College, Xiangyang, Hubei, China
| | - Jizhong Liu
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Dominik T, Mele A, Schurger A, Maoz U. Libet's legacy: A primer to the neuroscience of volition. Neurosci Biobehav Rev 2024; 157:105503. [PMID: 38072144 DOI: 10.1016/j.neubiorev.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The neuroscience of volition is an emerging subfield of the brain sciences, with hundreds of papers on the role of consciousness in action formation published each year. This makes the state-of-the-art in the discipline poorly accessible to newcomers and difficult to follow even for experts in the field. Here we provide a comprehensive summary of research in this field since its inception that will be useful to both groups. We also discuss important ideas that have received little coverage in the literature so far. We systematically reviewed a set of 2220 publications, with detailed consideration of almost 500 of the most relevant papers. We provide a thorough introduction to the seminal work of Benjamin Libet from the 1960s to 1980s. We also discuss common criticisms of Libet's method, including temporal introspection, the interpretation of the assumed physiological correlates of volition, and various conceptual issues. We conclude with recent advances and potential future directions in the field, highlighting modern methodological approaches to volition, as well as important recent findings.
Collapse
Affiliation(s)
| | - Alfred Mele
- Department of Philosophy, Florida State University, FL, USA
| | | | - Uri Maoz
- Brain Institute, Chapman University, CA, USA
| |
Collapse
|
4
|
Xie Y, Wang K, Meng J, Yue J, Meng L, Yi W, Jung TP, Xu M, Ming D. Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training. J Neural Eng 2023; 20:056037. [PMID: 37774694 DOI: 10.1088/1741-2552/acfe9c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Objective.Deep learning (DL) models have been proven to be effective in decoding motor imagery (MI) signals in Electroencephalogram (EEG) data. However, DL models' success relies heavily on large amounts of training data, whereas EEG data collection is laborious and time-consuming. Recently, cross-dataset transfer learning has emerged as a promising approach to meet the data requirements of DL models. Nevertheless, transferring knowledge across datasets involving different MI tasks remains a significant challenge in cross-dataset transfer learning, limiting the full utilization of valuable data resources. APPROACH This study proposes a pre-training-based cross-dataset transfer learning method inspired by Hard Parameter Sharing in multi-task learning. Different datasets with distinct MI paradigms are considered as different tasks, classified with shared feature extraction layers and individual task-specific layers to allow cross-dataset classification with one unified model. Then, Pre-training and fine-tuning are employed to transfer knowledge across datasets. We also designed four fine-tuning schemes and conducted extensive experiments on them. MAIN RESULTS The results showed that compared to models without pre-training, models with pre-training achieved a maximum increase in accuracy of 7.76%. Moreover, when limited training data were available, the pre-training method significantly improved DL model's accuracy by 27.34% at most. The experiments also revealed that pre-trained models exhibit faster convergence and remarkable robustness. The training time per subject could be reduced by up to 102.83 s, and the variance of classification accuracy decreased by 75.22% at best. SIGNIFICANCE This study represents the first comprehensive investigation of the cross-dataset transfer learning method between two datasets with different MI tasks. The proposed pre-training method requires only minimal fine-tuning data when applying DL models to new MI paradigms, making MI-Brain-computer interface more practical and user-friendly.
Collapse
Affiliation(s)
- Yuting Xie
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| | - Kun Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, People's Republic of China
| | - Jiayuan Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, People's Republic of China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, People's Republic of China
| | - Jin Yue
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| | - Lin Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, People's Republic of China
| | - Weibo Yi
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, People's Republic of China
- Beijing Institute of Mechanical Equipment, Beijin, People's Republic of China
| | - Tzyy-Ping Jung
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, People's Republic of China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, People's Republic of China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Mirzabagherian H, Menhaj MB, Suratgar AA, Talebi N, Abbasi Sardari MR, Sajedin A. Temporal-spatial convolutional residual network for decoding attempted movement related EEG signals of subjects with spinal cord injury. Comput Biol Med 2023; 164:107159. [PMID: 37531857 DOI: 10.1016/j.compbiomed.2023.107159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
Brain Computer Interface (BCI) offers a promising approach to restoring hand functionality for people with cervical spinal cord injury (SCI). A reliable classification of brain activities based on appropriate flexibility in feature extraction could enhance BCI systems performance. In the present study, based on convolutional layers with temporal-spatial, Separable and Depthwise structures, we develop Temporal-Spatial Convolutional Residual Network)TSCR-Net(and Temporal-Spatial Convolutional Iterative Residual Network)TSCIR-Net(structures to classify electroencephalogram (EEG) signals. Using EEG signals in five different hand movement classes of SCI people, we compare the effectiveness of TSCIR-Net and TSCR-Net models with some competitive methods. We use the bayesian hyperparameter optimization algorithm to tune the hyperparameters of compact convolutional neural networks. In order to show the high generalizability of the proposed models, we compare the results of the models in different frequency ranges. Our proposed models decoded distinctive characteristics of different movement efforts and obtained higher classification accuracy than previous deep neural networks. Our findings indicate that TSCIR-Net and TSCR-Net models fulfills a better classification accuracy of 71.11%, and 64.55% for EEG_All and 57.74%, and 67.87% for EEG_Low frequency data sets than the compared methods in the literature.
Collapse
Affiliation(s)
- Hamed Mirzabagherian
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave. 15875-4413, Tehran, Iran.
| | - Mohammad Bagher Menhaj
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave. 15875-4413, Tehran, Iran.
| | - Amir Abolfazl Suratgar
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave. 15875-4413, Tehran, Iran.
| | - Nasibeh Talebi
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran.
| | | | - Atena Sajedin
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave. 15875-4413, Tehran, Iran.
| |
Collapse
|
6
|
Sun C, Mou C. Survey on the research direction of EEG-based signal processing. Front Neurosci 2023; 17:1203059. [PMID: 37521708 PMCID: PMC10372445 DOI: 10.3389/fnins.2023.1203059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Electroencephalography (EEG) is increasingly important in Brain-Computer Interface (BCI) systems due to its portability and simplicity. In this paper, we provide a comprehensive review of research on EEG signal processing techniques since 2021, with a focus on preprocessing, feature extraction, and classification methods. We analyzed 61 research articles retrieved from academic search engines, including CNKI, PubMed, Nature, IEEE Xplore, and Science Direct. For preprocessing, we focus on innovatively proposed preprocessing methods, channel selection, and data augmentation. Data augmentation is classified into conventional methods (sliding windows, segmentation and recombination, and noise injection) and deep learning methods [Generative Adversarial Networks (GAN) and Variation AutoEncoder (VAE)]. We also pay attention to the application of deep learning, and multi-method fusion approaches, including both conventional algorithm fusion and fusion between conventional algorithms and deep learning. Our analysis identifies 35 (57.4%), 18 (29.5%), and 37 (60.7%) studies in the directions of preprocessing, feature extraction, and classification, respectively. We find that preprocessing methods have become widely used in EEG classification (96.7% of reviewed papers) and comparative experiments have been conducted in some studies to validate preprocessing. We also discussed the adoption of channel selection and data augmentation and concluded several mentionable matters about data augmentation. Furthermore, deep learning methods have shown great promise in EEG classification, with Convolutional Neural Networks (CNNs) being the main structure of deep neural networks (92.3% of deep learning papers). We summarize and analyze several innovative neural networks, including CNNs and multi-structure fusion. However, we also identified several problems and limitations of current deep learning techniques in EEG classification, including inappropriate input, low cross-subject accuracy, unbalanced between parameters and time costs, and a lack of interpretability. Finally, we highlight the emerging trend of multi-method fusion approaches (49.2% of reviewed papers) and analyze the data and some examples. We also provide insights into some challenges of multi-method fusion. Our review lays a foundation for future studies to improve EEG classification performance.
Collapse
|
7
|
Arı E, Taçgın E. Input Shape Effect on Classification Performance of Raw EEG Motor Imagery Signals with Convolutional Neural Networks for Use in Brain-Computer Interfaces. Brain Sci 2023; 13:brainsci13020240. [PMID: 36831784 PMCID: PMC9954790 DOI: 10.3390/brainsci13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
EEG signals are interpreted, analyzed and classified by many researchers for use in brain-computer interfaces. Although there are many different EEG signal acquisition methods, one of the most interesting is motor imagery signals. Many different signal processing methods, machine learning and deep learning models have been developed for the classification of motor imagery signals. Among these, Convolutional Neural Network models generally achieve better results than other models. Because the size and shape of the data is important for training Convolutional Neural Network models and discovering the right relationships, researchers have designed and experimented with many different input shape structures. However, no study has been found in the literature evaluating the effect of different input shapes on model performance and accuracy. In this study, the effects of different input shapes on model performance and accuracy in the classification of EEG motor imagery signals were investigated, which had not been specifically studied before. In addition, signal preprocessing methods, which take a long time before classification, were not used; rather, two CNN models were developed for training and classification using raw data. Two different datasets, BCI Competition IV 2A and 2B, were used in classification processes. For different input shapes, 53.03-89.29% classification accuracy and 2-23 s epoch time were obtained for 2A dataset, 64.84-84.94% classification accuracy and 4-10 s epoch time were obtained for 2B dataset. This study showed that the input shape has a significant effect on the classification performance, and when the correct input shape is selected and the correct CNN architecture is developed, feature extraction and classification can be done well by the CNN architecture without any signal preprocessing.
Collapse
Affiliation(s)
- Emre Arı
- Department of Mechanical Engineering, Faculty of Engineering, Marmara University, Istanbul 34840, Turkey
- Department of Mechanical Engineering, Faculty of Engineering, Dicle University, Diyarbakır 21280, Turkey
- Correspondence:
| | - Ertuğrul Taçgın
- Department of Mechanical Engineering, Faculty of Engineering, Doğuş University, Istanbul 34775, Turkey
| |
Collapse
|
8
|
Jia X, Song Y, Xie L. Excellent fine-tuning: From specific-subject classification to cross-task classification for motor imagery. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Wen Y, He W, Zhang Y. A new attention-based 3D densely connected cross-stage-partial network for motor imagery classification in BCI. J Neural Eng 2022; 19. [PMID: 36130589 DOI: 10.1088/1741-2552/ac93b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The challenge for motor imagery (MI) in brain-computer interface (BCI) systems is finding a reliable classification model that has high classification accuracy and excellent robustness. Currently, one of the main problems leading to degraded classification performance is the inaccuracy caused by nonstationarities and low signal-to-noise ratio in electroencephalogram (EEG) signals. APPROACH This study proposes a novel attention-based 3D densely connected cross-stage-partial network (DCSPNet) model to achieve efficient EEG-based MI classification. This is an end-to-end classification model framework based on the convolutional neural network (CNN) architecture. In this framework, to fully utilize the complementary features in each dimension, the optimal features are extracted adaptively from the EEG signals through the spatial-spectral-temporal (SST) attention mechanism. The 3D DCSPNet is introduced to reduce the gradient loss by segmenting the extracted feature maps to strengthen the network learning capability. Additionally, the design of the densely connected structure increases the robustness of the network. MAIN RESULTS The performance of the proposed method was evaluated using the BCI competition IV 2a and the high gamma dataset, achieving an average accuracy of 84.45% and 97.88%, respectively. Our method outperformed most state-of-the-art classification algorithms, demonstrating its effectiveness and strong generalization ability. SIGNIFICANCE The experimental results show that our method is promising for improving the performance of MI-BCI. As a general framework based on time-series classification, it can be applied to BCI-related fields.
Collapse
Affiliation(s)
- Yintang Wen
- Yanshan University, Qinhuangdao, Qinhuangdao, Hebei, 066004, CHINA
| | - Wenjing He
- Yanshan University, Qinhuangdao, Qinhuangdao, Hebei, 066004, CHINA
| | - Yuyan Zhang
- Yanshan University, Qinhuangdao, Qinhuangdao, Hebei, 066004, CHINA
| |
Collapse
|
10
|
A Deep Learning Method Based on the Attention Mechanism for Hardware Trojan Detection. ELECTRONICS 2022. [DOI: 10.3390/electronics11152400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The chip manufacturing of integrated circuits requires the participation of multiple parties, which greatly increases the possibility of hardware Trojan insertion and poses a significant threat to the entire hardware device landing; however, traditional hardware Trojan detection methods require gold chips, so the detection cost is relatively high. The attention mechanism can extract data with more adequate features, which can enhance the expressiveness of the network. This paper combines an attention module with a multilayer perceptron and convolutional neural network for hardware Trojan detection based on side-channel information, and evaluates the detection results by implementing specific experiments. The results show that the proposed method significantly outperforms machine learning classification methods and network-related methods, such as SVM and KNN, in terms of accuracy, precision, recall, and F1 value. In addition, the proposed method is effective in detecting data containing one or multiple hardware Trojans, and shows high sensitivity to the size of datasets.
Collapse
|
11
|
Yang J, Liu L, Yu H, Ma Z, Shen T. Multi-Hierarchical Fusion to Capture the Latent Invariance for Calibration-Free Brain-Computer Interfaces. Front Neurosci 2022; 16:824471. [PMID: 35546894 PMCID: PMC9082749 DOI: 10.3389/fnins.2022.824471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Brain-computer interfaces (BCI) based motor imagery (MI) has become a research hotspot for establishing a flexible communication channel for patients with apoplexy or degenerative pathologies. Accurate decoding of motor imagery electroencephalography (MI-EEG) signals, while essential for effective BCI systems, is still challenging due to the significant noise inherent in the EEG signals and the lack of informative correlation between the signals and brain activities. The application of deep learning for EEG feature representation has been rarely investigated, nevertheless bringing improvements to the performance of motor imagery classification. This paper proposes a deep learning decoding method based on multi-hierarchical representation fusion (MHRF) on MI-EEG. It consists of a concurrent framework constructed of bidirectional LSTM (Bi-LSTM) and convolutional neural network (CNN) to fully capture the contextual correlations of MI-EEG and the spectral feature. Also, the stacked sparse autoencoder (SSAE) is employed to concentrate these two domain features into a high-level representation for cross-session and subject training guidance. The experimental analysis demonstrated the efficacy and practicality of the proposed approach using a public dataset from BCI competition IV and a private one collected by our MI task. The proposed approach can serve as a robust and competitive method to improve inter-session and inter-subject transferability, adding anticipation and prospective thoughts to the practical implementation of a calibration-free BCI system.
Collapse
Affiliation(s)
| | | | | | | | - Tao Shen
- School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Zhang X, Lu Z, Zhang T, Li H, Wang Y, Tao Q. Realizing the Application of EEG Modeling in BCI Classification: Based on a Conditional GAN Converter. Front Neurosci 2021; 15:727394. [PMID: 34867150 PMCID: PMC8636039 DOI: 10.3389/fnins.2021.727394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalogram (EEG) modeling in brain-computer interface (BCI) provides a theoretical foundation for its development. However, limited by the lack of guidelines in model parameter selection and the inability to obtain personal tissue information in practice, EEG modeling in BCI is mainly focused on the theoretical qualitative level which shows a gap between the theory and its application. Based on such problems, this work combined the surface EEG simulation with a converter based on the generative adversarial network (GAN), to establish the connection from simulated EEG to its application in BCI classification. For the scalp EEGs modeling, a mathematical model was built according to the physics of surface EEG, which consisted of the parallel 3-population neural mass model, the equivalent dipole, and the forward computation. For application, a converter based on the conditional GAN was designed, to transfer the simulated theoretical-only EEG to its practical version, in the lack of individual bio-information. To verify the feasibility, based on the latest microexpression-assisted BCI paradigm proposed by our group, the converted simulated EEGs were used in the training of BCI classifiers. The results indicated that, compared with training with insufficient real data, by adding the simulated EEGs, the overall performance showed a significant improvement (P = 0.04 < 0.05), and the test performance can be improved by 2.17% ± 4.23, in which the largest increase was up to 12.60% ± 1.81. Through this work, the link from theoretical EEG simulation to BCI classification has been initially established, providing an enhanced novel solution for the application of EEG modeling in BCI.
Collapse
Affiliation(s)
- Xiaodong Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Zhufeng Lu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Teng Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Hanzhe Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Yachun Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China
| | - Qing Tao
- School of Mechanical Engineering, Xinjiang University, Wulumuqi, China
| |
Collapse
|