1
|
Ren H, Ran X, Qiu M, Lv S, Wang J, Wang C, Xu Y, Gao Z, Ren W, Zhou X, Mu J, Yu Y, Zhao Z. Abnormal nonlinear features of EEG microstate sequence in obsessive-compulsive disorder. BMC Psychiatry 2024; 24:881. [PMID: 39627734 PMCID: PMC11616381 DOI: 10.1186/s12888-024-06334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND At present, only a few studies have explored electroencephalography (EEG) microstates of patients with obsessive-compulsive disorder (OCD) and the results are inconsistent. Additionally, the nonlinear features of EEG microstate sequences contain rich information about the brain, yet how the nonlinear features of EEG microstate sequences abnormally change in patients with OCD is still unknown. METHODS Resting-state EEG data were collected from 48 OCD patients and macheted 48 healthy controls (HC). Subsequently, EEG microstate analysis was used to extract the microstate temporal parameters (duration, occurrence, coverage) and nonlinear features of EEG microstate sequences (sample entropy, Lempel-Ziv complexity, Hurst index). Finally, the temporal parameters and nonlinear features of EEG microstate sequences were sent to three kinds of machine learning models to classify OCD patients. RESULTS Both groups obtained four typical EEG microstate topographies. The duration of microstates A, B, and C in OCD patients decreased significantly, while the occurrence of microstate D increased significantly compared to HC. Sample entropy and Lempel-Ziv complexity of microstate sequences in OCD patients increased significantly, while Hurst index decreased significantly compared to HC. The classification accuracy using the nonlinear features of microstate sequences reached up to 85%, significantly higher than that based on microstate temporal parameter models. CONCLUSION This study provides supplementary findings on EEG microstates in OCD patients with a larger sample size. We found that the nonlinear features of EEG microstate sequences in OCD patients can serve as potential electrophysiological biomarkers for distinguishing OCD patients.
Collapse
Affiliation(s)
- Huicong Ren
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xiangying Ran
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Mengyue Qiu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Shiyang Lv
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Junming Wang
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Chang Wang
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Yongtao Xu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Zhixian Gao
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Wu Ren
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Xuezhi Zhou
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China
| | - Junlin Mu
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yi Yu
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China.
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China.
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China.
| | - Zongya Zhao
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China.
- School of Medical Engineering, School of Mathematical Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, People's Republic of China.
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, People's Republic of China.
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, People's Republic of China.
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, People's Republic of China.
| |
Collapse
|
2
|
Yan Y, Gao M, Geng Z, Wu Y, Xiao G, Wang L, Pang X, Yang C, Zhou S, Li H, Hu P, Wu X, Wang K. Abnormal EEG microstates in Alzheimer's disease: predictors of β-amyloid deposition degree and disease classification. GeroScience 2024; 46:4779-4792. [PMID: 38727873 PMCID: PMC11336126 DOI: 10.1007/s11357-024-01181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 08/22/2024] Open
Abstract
Electroencephalography (EEG) microstates are used to study cognitive processes and brain disease-related changes. However, dysfunctional patterns of microstate dynamics in Alzheimer's disease (AD) remain uncertain. To investigate microstate changes in AD using EEG and assess their association with cognitive function and pathological changes in cerebrospinal fluid (CSF). We enrolled 56 patients with AD and 38 age- and sex-matched healthy controls (HC). All participants underwent various neuropsychological assessments and resting-state EEG recordings. Patients with AD also underwent CSF examinations to assess biomarkers related to the disease. Stepwise regression was used to analyze the relationship between changes in microstate patterns and CSF biomarkers. Receiver operating characteristics analysis was used to assess the potential of these microstate patterns as diagnostic predictors for AD. Compared with HC, patients with AD exhibited longer durations of microstates C and D, along with a decreased occurrence of microstate B. These microstate pattern changes were associated with Stroop Color Word Test and Activities of Daily Living scale scores (all P < 0.05). Mean duration, occurrences of microstate B, and mean occurrence were correlated with CSF Aβ 1-42 levels, while duration of microstate C was correlated with CSF Aβ 1-40 levels in AD (all P < 0.05). EEG microstates are used to predict AD classification with moderate accuracy. Changes in EEG microstate patterns in patients with AD correlate with cognition and disease severity, relate to Aβ deposition, and may be useful predictors for disease classification.
Collapse
Affiliation(s)
- Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Manman Gao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Yue Wu
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Guixian Xiao
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Hongru Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, 218 Jixi Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Liu S, Yang S, Feng K, Wang C, Wang L. A Study on the Effects of Repetitive Transcranial Magnetic Stimulation on EEG Microstate in Patients With Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3369-3377. [PMID: 38917289 DOI: 10.1109/tnsre.2024.3418846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technology that can modulate cerebral cortical excitability. Electroencephalography (EEG) microstate analysis is an important tool for studying dynamic changes in brain functional activity. This study explores the pathophysiological changes in Parkinson's disease (PD) patients by analyzing the EEG microstate of PD patients, and analyzes the impact of rTMS on the clinical symptoms of PD patients. In a trial, 25 patients with PD and 18 healthy subjects of the same age were included. The clinical scale (the third part of Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (UPDRS-III) and Montreal Cognitive Assessment (MoCA)) scores of each patient were evaluated and the microstate characteristic parameters of all subjects were calculated. 10 Hz rTMS was used to stimulate the bilateral primary motor cortex (M1) of PD patients. After two weeks of treatment (10 times), the clinical scale score of each patient was re-evaluated and the microstate characteristic parameters were calculated. At the baseline, the occurrence, duration and coverage of microstate C in PD patients were significantly higher than those in healthy controls (P <0.05),and were significantly negatively correlated with the MoCA score (P <0.05). The duration and coverage of microstate D in PD patients were significantly lower than those in healthy controls (P <0.05), and were significantly negatively correlated with UPDRS-III score (P <0.05). After rTMS treatment in the PD group, the scale score of UPDRS-III was significantly reduced (P <0.05) and the scale score of MoCA was significantly increased. Moreover, the occurrence and coverage of microstate B were significantly increased (p <0.05). The occurrence, duration and coverage of microstate C were significantly reduced (P <0.05). The occurrence, duration and coverage of microstate D were significantly increased (P <0.05). This study shows that abnormal brain functional activity of PD patients can change microstate characteristic parameters, and these changes are significantly related to the decline of motor and cognitive functions. Furthermore, rTMS can improve the motor and cognitive functions and adjust the microstate characteristic parameters of PD patients. EEG microstate analysis can reflect the therapeutic effect of rTMS on PD patients.
Collapse
|
4
|
Zhao Z, Ran X, Lv S, Wang J, Qiu M, Wang C, Xu Y, Guo X, Gao Z, Mu J, Yu Y. Causal link between prefrontal cortex and EEG microstates: evidence from patients with prefrontal lesion. Front Neurosci 2023; 17:1306120. [PMID: 38161794 PMCID: PMC10757643 DOI: 10.3389/fnins.2023.1306120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction At present, elucidating the cortical origin of EEG microstates is a research hotspot in the field of EEG. Previous studies have suggested that the prefrontal cortex is closely related to EEG microstate C and D, but whether there is a causal link between the prefrontal cortex and microstate C or D remains unclear. Methods In this study, pretrial EEG data were collected from ten patients with prefrontal lesions (mainly located in inferior and middle frontal gyrus) and fourteen matched healthy controls, and EEG microstate analysis was applied. Results Our results showed that four classical EEG microstate topographies were obtained in both groups, but microstate C topography in patient group was obviously abnormal. Compared to healthy controls, the average coverage and occurrence of microstate C significantly reduced. In addition, the transition probability from microstate A to C and from microstate B to C in patient group was significantly lower than those of healthy controls. Discussion The above results demonstrated that the damage of prefrontal cortex especially inferior and middle frontal gyrus could lead to abnormalities in the spatial distribution and temporal dynamics of microstate C not D, showing that there is a causal link between the inferior and middle frontal gyrus and the microstate C. The significance of our findings lies in providing new evidence for elucidating the cortical origin of microstate C.
Collapse
Affiliation(s)
- Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Shiyang Lv
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Junming Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Mengyue Qiu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Chang Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Xiao Guo
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| | - Junlin Mu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Henan Engineering Research Center of Medical VR Intelligent Sensing Feedback, Xinxiang, China
| |
Collapse
|