1
|
Wu Y, Temple BA, Sevilla N, Zhang J, Zhu H, Zolotavin P, Jin Y, Duarte D, Sanders E, Azim E, Nimmerjahn A, Pfaff SL, Luan L, Xie C. Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior. Cell Rep 2024; 43:114199. [PMID: 38728138 PMCID: PMC11233142 DOI: 10.1016/j.celrep.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-μm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Benjamin A Temple
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nicole Sevilla
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jiaao Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Yifu Jin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Elischa Sanders
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Woodington BJ, Lei J, Carnicer-Lombarte A, Güemes-González A, Naegele TE, Hilton S, El-Hadwe S, Trivedi RA, Malliaras GG, Barone DG. Flexible circumferential bioelectronics to enable 360-degree recording and stimulation of the spinal cord. SCIENCE ADVANCES 2024; 10:eadl1230. [PMID: 38718109 PMCID: PMC11078185 DOI: 10.1126/sciadv.adl1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.
Collapse
Affiliation(s)
- Ben J. Woodington
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Jiang Lei
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Amparo Güemes-González
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Tobias E. Naegele
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El-Hadwe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rikin A. Trivedi
- Division of Neurosurgery, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Harland B, Kow CY, Svirskis D. Spinal intradural electrodes: opportunities, challenges and translation to the clinic. Neural Regen Res 2024; 19:503-504. [PMID: 37721274 PMCID: PMC10581576 DOI: 10.4103/1673-5374.380895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Bruce Harland
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Chien Yew Kow
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Várkuti B, Halász L, Hagh Gooie S, Miklós G, Smits Serena R, van Elswijk G, McIntyre CC, Lempka SF, Lozano AM, Erōss L. Conversion of a medical implant into a versatile computer-brain interface. Brain Stimul 2024; 17:39-48. [PMID: 38145752 DOI: 10.1016/j.brs.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Information transmission into the human nervous system is the basis for a variety of prosthetic applications. Spinal cord stimulation (SCS) systems are widely available, have a well documented safety record, can be implanted minimally invasively, and are known to stimulate afferent pathways. Nonetheless, SCS devices are not yet used for computer-brain-interfacing applications. OBJECTIVE Here we aimed to establish computer-to-brain communication via medical SCS implants in a group of 20 individuals who had been operated for the treatment of chronic neuropathic pain. METHODS In the initial phase, we conducted interface calibration with the aim of determining personalized stimulation settings that yielded distinct and reproducible sensations. These settings were subsequently utilized to generate inputs for a range of behavioral tasks. We evaluated the required calibration time, task training duration, and the subsequent performance in each task. RESULTS We could establish a stable spinal computer-brain interface in 18 of the 20 participants. Each of the 18 then performed one or more of the following tasks: A rhythm-discrimination task (n = 13), a Morse-decoding task (n = 3), and/or two different balance/body-posture tasks (n = 18; n = 5). The median calibration time was 79 min. The median training time for learning to use the interface in a subsequent task was 1:40 min. In each task, every participant demonstrated successful performance, surpassing chance levels. CONCLUSION The results constitute the first proof-of-concept of a general purpose computer-brain interface paradigm that could be deployed on present-day medical SCS platforms.
Collapse
Affiliation(s)
| | - László Halász
- Albert-Szentgyörgyi Medical School, Doctoral School of Clinical Medicine, Clinical and Experimental Research for Reconstructive and Organ-Sparing Surgery, University of Szeged, Szeged, Hungary
| | | | - Gabriella Miklós
- CereGate GmbH, München, Germany; National Institute of Mental Health, Neurology, and Neurosurgery, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Ricardo Smits Serena
- CereGate GmbH, München, Germany; Department of Orthopaedics and Sports Orthopaedics, Klinikum Rechts der Isar, Technical University of Munich, München, Germany
| | | | - Cameron C McIntyre
- Department of Biomedical Engineering and Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, Department of Anesthesiology and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Loránd Erōss
- National Institute of Mental Health, Neurology, and Neurosurgery, Budapest, Hungary
| |
Collapse
|