1
|
Hamidi Shishavan H, Roy R, Golzari K, Singla A, Zalozhin D, Lohan D, Farooq M, Dede EM, Kim I. Optimization of stimulus properties for SSVEP-based BMI system with a heads-up display to control in-vehicle features. PLoS One 2024; 19:e0308506. [PMID: 39288164 PMCID: PMC11407624 DOI: 10.1371/journal.pone.0308506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Over the years, the driver-vehicle interface has been improved, but interacting with in-vehicle features can still increase distraction and affect road safety. This study aims to introduce brain-machine interface (BMI)- based solution to potentially enhance road safety. To achieve this goal, we evaluated visual stimuli properties (SPs) for a steady state visually evoked potentials (SSVEP)-based BMI system. We used a heads-up display (HUD) as the primary screen to present icons for controlling in-vehicle functions such as music, temperature, settings, and navigation. We investigated the effect of various SPs on SSVEP detection performance including the duty cycle and signal-to-noise ratio of visual stimuli, the size, color, and frequency of the icons, and array configuration and location. The experiments were conducted with 10 volunteers and the signals were analyzed using the canonical correlation analysis (CCA), filter bank CCA (FBCCA), and power spectral density analysis (PSDA). Our experimental results suggest that stimuli with a green color, a duty cycle of 50%, presented at a central location, with a size of 36 cm2 elicit a significantly stronger SSVEP response and enhanced SSVEP detection time. We also observed that lower SNR stimuli significantly affect SSVEP detection performance. There was no statistically significant difference observed in SSVEP response between the use of an LCD monitor and a HUD.
Collapse
Affiliation(s)
- Hossein Hamidi Shishavan
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Raheli Roy
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kia Golzari
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Abhishek Singla
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - David Zalozhin
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Danny Lohan
- Toyota Research Institute of North America, Ann Arbor, Michigan, United States of America
| | - Muhamed Farooq
- Toyota Research Institute of North America, Ann Arbor, Michigan, United States of America
| | - Ercan M Dede
- Toyota Research Institute of North America, Ann Arbor, Michigan, United States of America
| | - Insoo Kim
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
2
|
Azadi Moghadam M, Maleki A. Comparative Study of Frequency Recognition Techniques for Steady-State Visual Evoked Potentials According to the Frequency Harmonics and Stimulus Number. J Biomed Phys Eng 2024; 14:365-378. [PMID: 39175558 PMCID: PMC11336048 DOI: 10.31661/jbpe.v0i0.2401-1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/20/2024] [Indexed: 08/24/2024]
Abstract
Background A key challenge in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems is to effectively recognize frequencies within a short time window. To address this challenge, the specific characteristics of the data are needed to select the frequency recognition method. These characteristics include factors, such as the number of stimulation targets and the presence of harmonic frequencies, resulting in optimizing the performance and accuracy of SSVEP-based BCI systems. Objective The current study aimed to examine the effect of data characteristics on frequency recognition accuracy. Material and Methods In this analytical study, five commonly used frequency recognition methods were examined, used to various datasets containing different numbers of frequencies, including sub-data with and without frequency harmonics. Results The increase in the number of frequencies in the Multivariate Linear Regression (MLR) method has led to a decrease in frequency recognition accuracy by 9%. Additionally, the presence of harmonic frequencies resulted in an 8% decrease in accuracy for the MLR method. Conclusion Frequency recognition using the MLR method reduces the effect of the number of different frequencies and harmonics of the stimulation frequencies on the frequency recognition accuracy.
Collapse
Affiliation(s)
- Maedeh Azadi Moghadam
- Department of Biotechnology, Faculty of New Science and Technologies, Semnan University, Semnan, Iran
| | - Ali Maleki
- Department of Biomedical Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
3
|
Chang CT, Pai KJ, Huang CH, Chou CY, Liu KW, Lin HB. Optimizing user experience in SSVEP-BCI systems. PROGRESS IN BRAIN RESEARCH 2024; 290:105-121. [PMID: 39448108 DOI: 10.1016/bs.pbr.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
The emergence of brain-computer interface (BCI) technology provides enormous potential for human medical and daily applications. Therefore, allowing users to tolerate the visual response of SSVEP for a long time has always been an important issue in the SSVEP-BCI system. We recruited three subjects and conducted visual experiments in groups using different frequencies (17 and 25Hz) and 60Hz light. After recording the physiological signal, use FFT to perform a time-frequency analysis on the physiological signal to check whether there is any difference in the signal-to-noise ratio and amplitude of the 60Hz light source compared with a single low-frequency signal source. The results show that combining a 60Hz light source with low-frequency LEDs can reduce participants' eye discomfort while achieving effective light stimulation control. At the same time, there was no significant difference in signal-to-noise ratio and amplitude between the groups. This also means that 60Hz can make vision more continuous and improve the subject's experience and comfort. At the same time, it does not affect the performance of the original SSVEP-induced response. This study highlights the importance of considering technical aspects and user comfort when designing SSVEP-BCI systems to increase the usability of SSVEP systems for long-term flash viewing.
Collapse
Affiliation(s)
- Chih-Tsung Chang
- Department of Electronic Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan.
| | - Kai-Jun Pai
- Undergraduate Program of Vehicle and Energy Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Hui Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Yi Chou
- Department of Electronic Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan
| | - Kun-Wei Liu
- Department of Electronic Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan
| | - Hong-Bo Lin
- Department of Electronic Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
4
|
Liu H, Wang Z, Li R, Zhao X, Xu T, Zhou T, Hu H. A comparative study of stereo-dependent SSVEP targets and their impact on VR-BCI performance. Front Neurosci 2024; 18:1367932. [PMID: 38660227 PMCID: PMC11041379 DOI: 10.3389/fnins.2024.1367932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Steady-state visual evoked potential brain-computer interfaces (SSVEP-BCI) have attracted significant attention due to their ease of deployment and high performance in terms of information transfer rate (ITR) and accuracy, making them a promising candidate for integration with consumer electronics devices. However, as SSVEP characteristics are directly associated with visual stimulus attributes, the influence of stereoscopic vision on SSVEP as a critical visual attribute has yet to be fully explored. Meanwhile, the promising combination of virtual reality (VR) devices and BCI applications is hampered by the significant disparity between VR environments and traditional 2D displays. This is not only due to the fact that screen-based SSVEP generally operates under static, stable conditions with simple and unvaried visual stimuli but also because conventional luminance-modulated stimuli can quickly induce visual fatigue. This study attempts to address these research gaps by designing SSVEP paradigms with stereo-related attributes and conducting a comparative analysis with the traditional 2D planar paradigm under the same VR environment. This study proposed two new paradigms: the 3D paradigm and the 3D-Blink paradigm. The 3D paradigm induces SSVEP by modulating the luminance of spherical targets, while the 3D-Blink paradigm employs modulation of the spheres' opacity instead. The results of offline 4-object selection experiments showed that the accuracy of 3D and 2D paradigm was 85.67 and 86.17% with canonical correlation analysis (CCA) and 86.17 and 91.73% with filter bank canonical correlation analysis (FBCCA), which is consistent with the reduction in the signal-to-noise ratio (SNR) of SSVEP harmonics for the 3D paradigm observed in the frequency-domain analysis. The 3D-Blink paradigm achieved 75.00% of detection accuracy and 27.02 bits/min of ITR with 0.8 seconds of stimulus time and task-related component analysis (TRCA) algorithm, demonstrating its effectiveness. These findings demonstrate that the 3D and 3D-Blink paradigms supported by VR can achieve improved user comfort and satisfactory performance, while further algorithmic optimization and feature analysis are required for the stereo-related paradigms. In conclusion, this study contributes to a deeper understanding of the impact of binocular stereoscopic vision mechanisms on SSVEP paradigms and promotes the application of SSVEP-BCI in diverse VR environments.
Collapse
Affiliation(s)
- Haifeng Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zhengyu Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ruxue Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xi Zhao
- School of Microelectronics, Shanghai University, Shanghai, China
| | - Tianheng Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Frontier Innovation Research Institute, Shanghai, China
| | - Ting Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- School of Microelectronics, Shanghai University, Shanghai, China
- Shanghai Frontier Innovation Research Institute, Shanghai, China
| | - Honglin Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Yan S, Hu Y, Zhang R, Qi D, Hu Y, Yao D, Shi L, Zhang L. Multilayer network-based channel selection for motor imagery brain-computer interface. J Neural Eng 2024; 21:016029. [PMID: 38295419 DOI: 10.1088/1741-2552/ad2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Objective. The number of electrode channels in a motor imagery-based brain-computer interface (MI-BCI) system influences not only its decoding performance, but also its convenience for use in applications. Although many channel selection methods have been proposed in the literature, they are usually based on the univariate features of a single channel. This leads to a loss of the interaction between channels and the exchange of information between networks operating at different frequency bands.Approach. We integrate brain networks containing four frequency bands into a multilayer network framework and propose a multilayer network-based channel selection (MNCS) method for MI-BCI systems. A graph learning-based method is used to estimate the multilayer network from electroencephalogram (EEG) data that are filtered by multiple frequency bands. The multilayer participation coefficient of the multilayer network is then computed to select EEG channels that do not contain redundant information. Furthermore, the common spatial pattern (CSP) method is used to extract effective features. Finally, a support vector machine classifier with a linear kernel is trained to accurately identify MI tasks.Main results. We used three publicly available datasets from the BCI Competition containing data on 12 healthy subjects and one dataset containing data on 15 stroke patients to validate the effectiveness of our proposed method. The results showed that the proposed MNCS method outperforms all channels (85.8% vs. 93.1%, 84.4% vs. 89.0%, 71.7% vs. 79.4%, and 72.7% vs. 84.0%). Moreover, it achieved significantly higher decoding accuracies on MI-BCI systems than state-of-the-art methods (pairedt-tests,p< 0.05).Significance. The experimental results showed that the proposed MNCS method can select appropriate channels to improve the decoding performance as well as the convenience of the application of MI-BCI systems.
Collapse
Affiliation(s)
- Shaoting Yan
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, People's Republic of China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuxia Hu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, People's Republic of China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Rui Zhang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, People's Republic of China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Daowei Qi
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, People's Republic of China
| | - Yubo Hu
- The No.3 Provincial People's Hospital of Henan Province, Zhengzhou, People's Republic of China
| | - Dezhong Yao
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, People's Republic of China
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, People's Republic of China
- Beijing National Research Center for Information Science and Technology, Beijing, People's Republic of China
| | - Lipeng Zhang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, People's Republic of China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
6
|
Oh E, Shin S, Kim SP. Brain-computer interface in critical care and rehabilitation. Acute Crit Care 2024; 39:24-33. [PMID: 38224957 PMCID: PMC11002623 DOI: 10.4266/acc.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
This comprehensive review explores the broad landscape of brain-computer interface (BCI) technology and its potential use in intensive care units (ICUs), particularly for patients with motor impairments such as quadriplegia or severe brain injury. By employing brain signals from various sensing techniques, BCIs offer enhanced communication and motor rehabilitation strategies for patients. This review underscores the concept and efficacy of noninvasive, electroencephalogram-based BCIs in facilitating both communicative interactions and motor function recovery. Additionally, it highlights the current research gap in intuitive "stop" mechanisms within motor rehabilitation protocols, emphasizing the need for advancements that prioritize patient safety and individualized responsiveness. Furthermore, it advocates for more focused research that considers the unique requirements of ICU environments to address the challenges arising from patient variability, fatigue, and limited applicability of current BCI systems outside of experimental settings.
Collapse
Affiliation(s)
- Eunseo Oh
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Seyoung Shin
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
7
|
Wang F, Wen Y, Bi J, Li H, Sun J. A portable SSVEP-BCI system for rehabilitation exoskeleton in augmented reality environment. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Zhang R, Cao L, Xu Z, Zhang Y, Zhang L, Hu Y, Chen M, Yao D. Improving AR-SSVEP Recognition Accuracy Under High Ambient Brightness Through Iterative Learning. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1796-1806. [PMID: 37030737 DOI: 10.1109/tnsre.2023.3260842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Augmented reality-based brain-computer interface (AR-BCI) system is one of the important ways to promote BCI technology outside of the laboratory due to its portability and mobility, but its performance in real-world scenarios has not been fully studied. In the current study, we first investigated the effect of ambient brightness on AR-BCI performance. 5 different light intensities were set as experimental conditions to simulate typical brightness in real scenes, while the same steady-state visual evoked potentials (SSVEP) stimulus was displayed in the AR glass. The data analysis results showed that SSVEP can be evoked under all 5 light intensities, but the response intensity became weaker when the brightness increased. The recognition accuracies of AR-SSVEP were negatively correlated to light intensity, the highest accuracies were 89.35% with FBCCA and 83.33% with CCA under 0 lux light intensity, while they decreased to 62.53% and 49.24% under 1200 lux. To solve the accuracy loss problem in high ambient brightness, we further designed a SSVEP recognition algorithm with iterative learning capability, named ensemble online adaptive CCA (eOACCA). The main strategy is to provide initial filters for high-intensity data by iteratively learning low-light-intensity AR-SSVEP data. The experimental results showed that the eOACCA algorithm had significant advantages under higher light intensities ( 600 lux). Compared with FBCCA, the accuracy of eOACCA under 1200 lux was increased by 13.91%. In conclusion, the current study contributed to the in-depth understanding of the performance variations of AR-BCI under different lighting conditions, and was helpful in promoting the AR-BCI application in complex lighting environments.
Collapse
|
9
|
Gao Y, Kassymova RT, Luo Y. Application of virtual simulation situational model in Russian spatial preposition teaching. Front Psychol 2022; 13:985887. [PMID: 36186339 PMCID: PMC9524420 DOI: 10.3389/fpsyg.2022.985887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
The purpose is to improve the teaching quality of Russian spatial prepositions in colleges. This work takes teaching Russian spatial prepositions as an example to study the key technologies in 3D Virtual Simulation (VS) teaching. 3D VS situational teaching is a high-end visual teaching technology. VS situation construction focuses on Human-Computer Interaction (HCI) to explore and present a realistic language teaching scene. Here, the Steady State Visual Evoked Potential (SSVEP) is used to control Brain-Computer Interface (BCI). An SSVEP-BCI system is constructed through the Hybrid Frequency-Phase Modulation (HFPM). The acquisition system can obtain the current SSVEP from the user's brain to know which module the user is watching to complete instructions encoded by the module. Experiments show that the recognition accuracy of the proposed SSVEP-BCI system based on HFPM increases with data length. When the data length is 0.6-s, the Information Transfer Rate (ITR) reaches the highest: 242.21 ± 46.88 bits/min. Therefore, a high-speed BCI character input system based on SSVEP is designed using HFPM. The main contribution of this work is to build a SSVEP-BCI system based on joint frequency phase modulation. It is better than the currently-known brain computer interface character input system, and is of great value to optimize the performance of the virtual simulation situation system for Russian spatial preposition teaching.
Collapse
Affiliation(s)
- Yanrong Gao
- Faculty of Philology and World Languages, Al-Farabi Kazakh Nation University, Almaty, Kazakhstan
- Euro-Language's College, Zhejiang Yuexiu University, Shaoxing, China
- *Correspondence: Yanrong Gao
| | - R. T. Kassymova
- Faculty of Philology and World Languages, Al-Farabi Kazakh Nation University, Almaty, Kazakhstan
| | - Yong Luo
- Network and Educational Technology Center, Zhejiang Yuexiu University, Shaoxing, China
| |
Collapse
|