1
|
Shafiezadeh S, Duma GM, Mento G, Danieli A, Antoniazzi L, Del Popolo Cristaldi F, Bonanni P, Testolin A. Calibrating Deep Learning Classifiers for Patient-Independent Electroencephalogram Seizure Forecasting. SENSORS (BASEL, SWITZERLAND) 2024; 24:2863. [PMID: 38732969 PMCID: PMC11086106 DOI: 10.3390/s24092863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.
Collapse
Affiliation(s)
- Sina Shafiezadeh
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
| | - Gian Marco Duma
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Giovanni Mento
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alberto Danieli
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Lisa Antoniazzi
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | | | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Alberto Testolin
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
- Department of Mathematics, University of Padova, 35131 Padova, Italy
| |
Collapse
|
2
|
Jemal I, Abou-Abbas L, Henni K, Mitiche A, Mezghani N. Domain adaptation for EEG-based, cross-subject epileptic seizure prediction. Front Neuroinform 2024; 18:1303380. [PMID: 38371495 PMCID: PMC10869477 DOI: 10.3389/fninf.2024.1303380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
The ability to predict the occurrence of an epileptic seizure is a safeguard against patient injury and health complications. However, a major challenge in seizure prediction arises from the significant variability observed in patient data. Common patient-specific approaches, which apply to each patient independently, often perform poorly for other patients due to the data variability. The aim of this study is to propose deep learning models which can handle this variability and generalize across various patients. This study addresses this challenge by introducing a novel cross-subject and multi-subject prediction models. Multiple-subject modeling broadens the scope of patient-specific modeling to account for the data from a dedicated ensemble of patients, thereby providing some useful, though relatively modest, level of generalization. The basic neural network architecture of this model is then adapted to cross-subject prediction, thereby providing a broader, more realistic, context of application. For accrued performance, and generalization ability, cross-subject modeling is enhanced by domain adaptation. Experimental evaluation using the publicly available CHB-MIT and SIENA data datasets shows that our multiple-subject model achieved better performance compared to existing works. However, the cross-subject faces challenges when applied to different patients. Finally, through investigating three domain adaptation methods, the model accuracy has been notably improved by 10.30% and 7.4% for the CHB-MIT and SIENA datasets, respectively.
Collapse
Affiliation(s)
- Imene Jemal
- Centre EMT, Institut National de la Recherche Scientifique, Montréal, QC, Canada
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| | - Lina Abou-Abbas
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| | - Khadidja Henni
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| | - Amar Mitiche
- Centre EMT, Institut National de la Recherche Scientifique, Montréal, QC, Canada
| | - Neila Mezghani
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| |
Collapse
|