1
|
Liu Y, Xin H, Shu Y, Li L, Long T, Zeng L, Huang L, Liu X, Deng Y, Zhu Y, Li H, Peng D. Altered Density of Resting-State Long- and Short-Range Functional Connectivity in Patients with Moderate-to-Severe Obstructive Sleep Apnea. Nat Sci Sleep 2024; 16:1891-1904. [PMID: 39655313 PMCID: PMC11625638 DOI: 10.2147/nss.s483030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose This study is to evaluate the altered number of functional connection (s) in patients with obstructive sleep apnea (OSA) by functional connectivity density (FCD), to investigate its relationship with cognitive function, and to explore whether these features could be used to distinguish OSA from healthy controls (HCs). Methods Seventy-six OSA patients and 72 HCs were included in the analysis. All participants underwent resting-state functional magnetic resonance imaging scan. Subsequently, intergroup differences between long-and short-range FCD groups were obtained in the Matlab platform by using the degree centrality option with a 75 mm cutoff. The partial correlation analysis were used to assess the relationship between the altered FCD value and clinical assessments in OSA patients. The FCD values of the different brain regions were used as classification features to distinguish the two groups by support vector machine (SVM). Results Compared to HCs, OSA patients had decreased long-range FCD in the right superior frontal gyrus (SFG), right precuneus, and left middle frontal gyrus (MFG). Simultaneously, increased long-range FCD in the right cingulate gyrus (CG). Meanwhile, the short-range FCD were decreased in the right postcentral gyrus (PoCG), right SFG, left MFG, and right CG. The short-range FCD values of the right PoCG were correlated with the Montreal Cognitive Assessment scores in OSA patients. SVM analysis showed that FCD in differential brain regions could differentiate OSA patients from HCs. Conclusion Long- and short-range FCD values in different brain regions of OSA patients may be related to cognitive decline, and also be effective in distinguishing OSA patients from HCs. These findings provide new perspectives on neurocognition in OSA patients.
Collapse
Affiliation(s)
- Yumeng Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Huizhen Xin
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Lifeng Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ting Long
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Li Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ling Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yingke Deng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yu Zhu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| |
Collapse
|
2
|
Fan X, Mao X, Yu P, Han D, Chen C, Wang H, Zhang X, Liu S, Chen W, Chen Z, Du X, Jin L, Song Y, Li H, Zhang N, Wu Y, Chang L, Wang C. Sleep disturbance impaired memory consolidation via lateralized disruption of metabolite in the thalamus and hippocampus: A cross-sectional proton magnetic resonance spectroscopy study. J Alzheimers Dis 2024; 102:1057-1073. [PMID: 39584303 DOI: 10.1177/13872877241295401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Memory consolidation in sleep-dependent individuals involves the circuitry connections of cortex, thalamus and hippocampus, regulating via neural metabolites. However, the disruption of metabolic pattern in thalamus and hippocampus remains unclear. OBJECTIVE We aim to explore the disruptive effects of insomnia on the metabolites during memory consolidation, particularly the underlying neurometabolic mechanisms in comorbidity of failed memory consolidation. METHODS This study integrates clinical research with animal experiment. In clinical research, 49 participants were divided into four groups: healthy controls (HC, n = 11), insomnia with normal cognition (IS, n = 14), mild cognitive impairment without insomnia (MCI, n = 10), and insomnia with mild cognitive impairment (IS-MCI, n = 14). Magnetic resonance spectroscopy (MRS) was used to evaluate the neural γ-aminobutyric acid (GABA) and glutamate-glutamine (Glx) in bilateral thalamus. In experimental studies, the rat model of sleep deprivation combined with amyloid-β (Aβ) injection was established, after behavior testing, the levels of Glx, choline (Cho) and N-acetyl aspartate (NAA) in the bilateral hippocampus were evaluated with MRS. RESULTS The patients in the IS-MCI group exhibited significantly lower GABA level than IS, MCI and HC groups. Results from rat studies showed that sleep deprivation exacerbated asymmetric alterations in Aβ-induced bilateral hippocampal metabolite abnormalities, which correlated with cognition. These neuro-metabolite disruption accompanied with synaptic loss and activation of astrocytes. CONCLUSIONS The lateralized decrease in GABA levels of thalamus and NAA, Cho, and Glx levels of hippocampus under conditions of sleep disturbance with cognitive decline may provide evidence for the neural metabolic mechanisms underlying the disruption of memory consolidation.
Collapse
Affiliation(s)
- Xiaowei Fan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ping Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chuxin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xinyi Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Siyu Liu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Weijing Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Ziyan Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoqiang Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chunxue Wang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Huo C, Xu G, Xie H, Chen T, Shao G, Wang J, Li W, Wang D, Li Z. Functional near-infrared spectroscopy in non-invasive neuromodulation. Neural Regen Res 2024; 19:1517-1522. [PMID: 38051894 PMCID: PMC10883499 DOI: 10.4103/1673-5374.387970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks, which have been widely applied in the field of central neurological diseases, such as stroke, Parkinson's disease, and mental disorders. Although significant advances have been made in neuromodulation technologies, the identification of optimal neurostimulation parameters including the cortical target, duration, and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits. Moreover, the neural mechanism underlying neuromodulation for improved behavioral performance remains poorly understood. Recently, advancements in neuroimaging have provided insight into neuromodulation techniques. Functional near-infrared spectroscopy, as a novel non-invasive optical brain imaging method, can detect brain activity by measuring cerebral hemodynamics with the advantages of portability, high motion tolerance, and anti-electromagnetic interference. Coupling functional near-infrared spectroscopy with neuromodulation technologies offers an opportunity to monitor the cortical response, provide real-time feedback, and establish a closed-loop strategy integrating evaluation, feedback, and intervention for neurostimulation, which provides a theoretical basis for development of individualized precise neurorehabilitation. We aimed to summarize the advantages of functional near-infrared spectroscopy and provide an overview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and brain-computer interfaces. Furthermore, the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized. In conclusion, functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central neural reorganization to achieve better functional recovery from central nervous system diseases.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hui Xie
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tiandi Chen
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Guangjian Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong Province, China
| | - Jue Wang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Wenhao Li
- School of Rehabilitation Engineering, Beijing College of Social Administration, Beijing, China
| | - Daifa Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
4
|
Xu M, Zhang Y, Zhang Y, Liu X, Qing K. EEG biomarkers analysis in different cognitive impairment after stroke: an exploration study. Front Neurol 2024; 15:1358167. [PMID: 38770525 PMCID: PMC11104451 DOI: 10.3389/fneur.2024.1358167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Stroke is a cerebrovascular illness that brings about the demise of brain tissue. It is the third most prevalent cause of mortality worldwide and a significant contributor to physical impairment. Generally, stroke is triggered by blood clots obstructing the brain's blood vessels, or when these vessels rupture. And, the cognitive impairment's evaluation and detection after stroke is crucial research issue and significant project. Thus, the objective of this work is to explore an potential neuroimage tool and find their EEG biomarkers to evaluate and detect four cognitive impairment levels after stroke. In this study, power density spectrum (PSD), functional connectivity map, and one-way ANOVA methods were proposed to analyze the EEG biomarker differences, and the number of patient participants were thirty-two human including eight healthy control, mild, moderate, severe cognitive impairment levels, respectively. Finally, healthy control has significant PSD differences compared to mid, moderate and server cognitive impairment groups. And, the theta and alpha bands of severe cognitive impairment groups have presented consistent superior PSD power at the right frontal cortex, and the theta and beta bands of mild, moderated cognitive impairment (MoCI) groups have shown significant similar superior PSD power tendency at the parietal cortex. The significant gamma PSD power difference has presented at the left-frontal cortex in the mild cognitive impairment (MCI) groups, and severe cognitive impairment (SeCI) group has shown the significant PSD power at the gamma band of parietal cortex. At the point of functional connectivity map, the SeCI group appears to have stronger functional connectivity compared to the other groups. In conclusion, EEG biomarkers can be applied to classify different cognitive impairment groups after stroke. These findings provide a new approach for early detection and diagnosis of cognitive impairment after stroke and also for the development of new treatment options.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Neurology, Chongqing Public Healthy Medical Center, Chongqing, China
| | - Yucheng Zhang
- Department of Mathematics, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Yue Zhang
- Department of Psychology, School of Psychology, Shenzhen University, Shenzhen, China
| | - Xisong Liu
- Intensive Care Unit, Chongqing Public Healthy Medical Center, Chongqing, China
| | - Kunqiang Qing
- Automotive Software Innovation Center, Chongqing, China
- Research Group of Brain-Computer Interface, Brainup Institute of Science and Technology, Chongqing, China
| |
Collapse
|
5
|
Lu H, Zhang Y, Qiu H, Zhang Z, Tan X, Huang P, Zhang M, Miao D, Zhu X. A new perspective for evaluating the efficacy of tACS and tDCS in improving executive functions: A combined tES and fNIRS study. Hum Brain Mapp 2024; 45:e26559. [PMID: 38083976 PMCID: PMC10789209 DOI: 10.1002/hbm.26559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Executive function enhancement is considered necessary for improving the quality of life of patients with neurological or psychiatric disorders, such as attention-deficit/hyperactivity disorder, obsessive-compulsive disorder and Alzheimer's disease. Transcranial electrical stimulation (tES) has been shown to have some beneficial effects on executive functioning, but the quantification of these improvements remains controversial. We aimed to explore the potential beneficial effects on executive functioning induced by the use of transcranial alternating current stimulation (tACS)/transcranial direct current stimulation (tDCS) on the right inferior frontal gyrus (IFG) and the accompanying brain function variations in the resting state. METHODS We recruited 229 healthy adults to participate in Experiments 1 (105 participants) and 2 (124 participants). The participants in each experiment were randomly divided into tACS, tDCS, and sham groups. The participants completed cognitive tasks to assess behavior related to three core components of executive functions. Functional near-infrared spectroscopy (fNIRS) was used to monitor the hemodynamic changes in crucial cortical regions in the resting state. RESULTS Inhibition and cognitive flexibility (excluding working memory) were significantly increased after tACS/tDCS, but there were no significant behavioral differences between the tACS and tDCS groups. fNIRS revealed that tDCS induced decreases in the functional connectivity (increased neural efficiency) of the relevant cortices. CONCLUSIONS Enhancement of executive function was observed after tES, and the beneficial effects of tACS/tDCS may need to be precisely evaluated via brain imaging indicators at rest. tDCS revealed better neural benefits than tACS during the stimulation phase. These findings might provide new insights for selecting intervention methods in future studies and for evaluating the clinical efficacy of tES.
Collapse
Affiliation(s)
- Hongliang Lu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Yajuan Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Huake Qiu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Zhilong Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xuanyi Tan
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Peng Huang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Mingming Zhang
- Department of Psychology, College of EducationShanghai Normal UniversityShanghaiChina
| | - Danmin Miao
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xia Zhu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| |
Collapse
|
6
|
Chen H, Xu J, Xu H, Luo T, Li Y, Jiang K, Shentu Y, Tong Z. New Insights into Alzheimer’s Disease: Novel Pathogenesis, Drug Target and Delivery. Pharmaceutics 2023; 15:pharmaceutics15041133. [PMID: 37111618 PMCID: PMC10143738 DOI: 10.3390/pharmaceutics15041133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer’s disease (AD), the most common type of dementia, is characterized by senile plaques composed of amyloid β protein (Aβ) and neurofilament tangles derived from the hyperphosphorylation of tau protein. However, the developed medicines targeting Aβ and tau have not obtained ideal clinical efficacy, which raises a challenge to the hypothesis that AD is Aβ cascade-induced. A critical problem of AD pathogenesis is which endogenous factor induces Aβ aggregation and tau phosphorylation. Recently, age-associated endogenous formaldehyde has been suggested to be a direct trigger for Aβ- and tau-related pathology. Another key issue is whether or not AD drugs are successfully delivered to the damaged neurons. Both the blood–brain barrier (BBB) and extracellular space (ECS) are the barriers for drug delivery. Unexpectedly, Aβ-related SP deposition in ECS slows down or stops interstitial fluid drainage in AD, which is the direct reason for drug delivery failure. Here, we propose a new pathogenesis and perspectives on the direction of AD drug development and drug delivery: (1) aging-related formaldehyde is a direct trigger for Aβ assembly and tau hyperphosphorylation, and the new target for AD therapy is formaldehyde; (2) nano-packaging and physical therapy may be the promising strategy for increasing BBB permeability and accelerating interstitial fluid drainage.
Collapse
Affiliation(s)
- Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinan Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanyuan Xu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiancheng Luo
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Yihao Li
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Jiang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yangping Shentu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Huo C, Sun Z, Xu G, Li X, Xie H, Song Y, Li Z, Wang Y. fNIRS-based brain functional response to robot-assisted training for upper-limb in stroke patients with hemiplegia. Front Aging Neurosci 2022; 14:1060734. [PMID: 36583188 PMCID: PMC9793407 DOI: 10.3389/fnagi.2022.1060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Robot-assisted therapy (RAT) has received considerable attention in stroke motor rehabilitation. Characteristics of brain functional response associated with RAT would provide a theoretical basis for choosing the appropriate protocol for a patient. However, the cortical response induced by RAT remains to be fully elucidated due to the lack of dynamic brain functional assessment tools. Objective To guide the implementation of clinical therapy, this study focused on the brain functional responses induced by RAT in patients with different degrees of motor impairment. Methods A total of 32 stroke patients were classified into a low score group (severe impairment, n = 16) and a high score group (moderate impairment, n = 16) according to the motor function of the upper limb and then underwent RAT training in assistive mode with simultaneous cerebral haemodynamic measurement by functional near-infrared spectroscopy (fNIRS). Functional connectivity (FC) and the hemisphere autonomy index (HAI) were calculated based on the wavelet phase coherence among fNIRS signals covering bilateral prefrontal, motor and occipital areas. Results Specific cortical network response related to RAT was observed in patients with unilateral moderate-to-severe motor deficits in the subacute stage. Compared with patients with moderate dysfunction, patients with severe impairment showed a wide range of significant FC responses in the bilateral hemispheres induced by RAT with the assistive mode, especially task-related involvement of ipsilesional supplementary motor areas. Conclusion Under assisted mode, RAT-related extensive cortical response in patients with severe dysfunction might contribute to brain functional organization during motor performance, which is considered the basic neural substrate of motor-related processes. In contrast, the limited cortical response related to RAT in patients with moderate dysfunction may indicate that the training intensity needs to be adjusted in time according to the brain functional state. fNIRS-based assessment of brain functional response assumes great importance for the customization of an appropriate protocol training in the clinical practice.
Collapse
Affiliation(s)
- Congcong Huo
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zhifang Sun
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Gongcheng Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinglou Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Xie
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ying Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|