1
|
He Z, Liu Q, Yang R, Zhou Y, Liu X, Deng H, Cong H, Liu Y, Liao L. Low-Intensity Ultrasound Tibial Nerve Stimulation Suppresses Bladder Activity in Rats. Neuromodulation 2025; 28:95-102. [PMID: 39078346 DOI: 10.1016/j.neurom.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND AND OBJECTIVE Noninvasive neuromodulation, particularly through low-intensity ultrasound, holds promise in the fields of neuroscience and neuro-engineering. Ultrasound can stimulate the central nervous system to treat neurologic disorders of the brain and activate peripheral nerve activity. The aim of this study is to investigate the inhibitory effect of low-intensity ultrasonic tibial nerve stimulation on both the physiological state and the overactive bladder (OAB) model in rats. MATERIALS AND METHODS A total of 28 female Sprague-Dawley rats were used in this study. Continuous transurethral instillation of 0.9% normal saline into the bladder was initially performed to stimulate physiological bladder activity. Subsequently, a solution containing 0.3% acetic acid dissolved in saline was instilled to induce rat models of OAB. The study comprised two phases: initial observation of bladder response to low-intensity ultrasound (1 MHz, 1 W/cm2, 50% duty cycle) in seven rats; subsequent exploration of ultrasound frequency (3 MHz) and intensity (2 W/cm2 and 3 W/cm2) effects in 21 rats. The intercontraction intervals (ICIs) were the primary outcome measure. Histologic analysis of tibial nerves and surrounding muscle tissues determined safe ultrasound parameters. RESULTS Low-intensity ultrasound tibial nerve stimulation significantly inhibited normal and OAB activity. Ultrasound stimulation at 1 MHz, 1 W/cm2, with a 50% duty cycle significantly prolonged the ICI in both normal (p < 0.0001) and OAB rats (p < 0.01), as did transitioning to a 3 MHz frequency (p = 0.001 for normal rats; p < 0.01 for OAB rats). Similarly, at an intensity of 2 W/cm2 and 1 MHz frequency with a 50% duty cycle, ultrasound stimulation significantly prolonged the ICI in both normal (p < 0.01) and OAB rats (p < 0.005). Furthermore, switching to a 3 W/cm2 ultrasound intensity also significantly extended the ICI in both normal (p < 0.05) and OAB rats (p = 0.01). However, after different ultrasound intensities and frequencies, there was no statistical difference in ICI ratios (preultrasound stimulation vs postultrasound stimulation/preultrasound stimulation ∗ 100%) in all rats (p > 0.05). Low-intensity ultrasound tibial nerve stimulation did not influence baseline pressure, threshold pressure, or maximum pressure. In addition, a latency period in bladder reflex inhibition was induced by low-intensity ultrasound tibial nerve stimulation in some rats. Histologic analysis indicated no evident nerve or muscle tissue damage or abnormalities. CONCLUSIONS This study confirmed the potential of transcutaneous ultrasound tibial nerve stimulation to improve bladder function. According to the findings, the ultrasonic intensities ranging from 1 to 3 W/cm2 and frequencies of 1 MHz and 3 MHz are both feasible and safe treatment parameters. This study portended the promise of low-intensity ultrasound tibial nerve stimulation as a treatment for OAB and provides a basis and reference for future clinical applications.
Collapse
Affiliation(s)
- Zitian He
- Department of Rehabilitation, Yuying Children's Hospital, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinggang Liu
- Department of Urology, China Rehabilitation Research Center, Beijing, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Ruiyao Yang
- Department of Urology, China Rehabilitation Research Center, Beijing, China
| | - Yongheng Zhou
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xin Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Deng
- Department of Urology, China Rehabilitation Research Center, Beijing, China; School of Rehabilitation, Capital Medical University, Beijing, China
| | - Huiling Cong
- Department of Urology, China Rehabilitation Research Center, Beijing, China; School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yixi Liu
- Department of Urology, China Rehabilitation Research Center, Beijing, China; School of Rehabilitation, Capital Medical University, Beijing, China
| | - Limin Liao
- Department of Rehabilitation, Yuying Children's Hospital, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China; School of Rehabilitation, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Huang J, Wang P, Wang W, Wei J, Yang L, Liu Z, Li G. Using Electrical Muscle Stimulation to Enhance Electrophysiological Performance of Agonist-Antagonist Myoneural Interface. Bioengineering (Basel) 2024; 11:904. [PMID: 39329646 PMCID: PMC11444137 DOI: 10.3390/bioengineering11090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The agonist-antagonist myoneural interface (AMI), a surgical method to reinnervate physiologically-relevant proprioceptive feedback for control of limb prostheses, has demonstrated the ability to provide natural afferent sensations for limb amputees when actuating their prostheses. Following AMI surgery, one potential challenge is atrophy of the disused muscles, which would weaken the reinnervation efficacy of AMI. It is well known that electrical muscle stimulus (EMS) can reduce muscle atrophy. In this study, we conducted an animal investigation to explore whether the EMS can significantly improve the electrophysiological performance of AMI. AMI surgery was performed in 14 rats, in which the distal tendons of bilateral solei donors were connected and positioned on the surface of the left biceps femoris. Subsequently, the left tibial nerve and the common peroneus nerve were sutured onto the ends of the connected donor solei. Two stimulation electrodes were affixed onto the ends of the donor solei for EMS delivery. The AMI rats were randomly divided into two groups. One group received the EMS treatment (designated as EMS_on) regularly for eight weeks and another received no EMS (designated as EMS_off). Two physiological parameters, nerve conduction velocity (NCV) and motor unit number, were derived from the electrically evoked compound action potential (CAP) signals to assess the electrophysiological performance of AMI. Our experimental results demonstrated that the reinnervated muscles of the EMS_on group generated higher CAP signals in comparison to the EMS_off group. Both NCV and motor unit number were significantly elevated in the EMS_on group. Moreover, the EMS_on group displayed statistically higher CAP signals on the indirectly activated proprioceptive afferents than the EMS_off group. These findings suggested that EMS treatment would be promising in enhancing the electrophysiological performance and facilitating the reinnervation process of AMI.
Collapse
Affiliation(s)
- Jianping Huang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Ping Wang
- Biomedical Sensing Engineering and Technology Research Center, Shandong University, Jinan 250000, China;
| | - Wei Wang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
| | - Jingjing Wei
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
| | - Lin Yang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
- Biomedical Sensing Engineering and Technology Research Center, Shandong University, Jinan 250000, China;
| | - Guanglin Li
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China; (J.H.); (W.W.); (J.W.); (L.Y.)
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- The SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250000, China
| |
Collapse
|
4
|
Ji N, Li Y, Wei J, Huang L, Lin WH, Li G. The Changes of Cardiovascular Neurotransmitter Levels under Low-Intensity Focused Ultrasound Stimulation of the Vagus Nerve. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083122 DOI: 10.1109/embc40787.2023.10340334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND Our previous study has shown that stimulation of the vagus nerve with low-intensity focused ultrasound could modulate blood pressure (BP), but the underlying mechanisms remain unclear. This study investigated the changes of cardiovascular neurotransmitter levels to indirectly evaluate the responses of the autonomic nervous system and renin-angiotensin system under low-intensity focused ultrasound stimulation (FUS) of the vagus nerve. METHODS Cardiovascular neurotransmitter levels of epinephrine (EPI), norepinephrine (NE), and angiotensin II (ANGII) were measured and compared before and after the FUS in seven spontaneously hypertensive rats; and were also measured and compared between a target stimulation group (FUS, n = 6) and non-target stimulation group (Control, n = 5) after stimulation to exclude the influence of potential confounding factors. RESULTS The t-test results showed that the levels of EPI, NE, and ANGII were significantly decreased (P < 0.05) after stimulation compared to before stimulation. Additionally, the levels of NE and EPI were significantly lower (P < 0.05) in the FUS group than in the Control group after stimulation, indicating that the activities of the sympathetic nervous system and renin-angiotensin system of the vagus nerve might be inhibited by FUS of the vagus nerve. CONCLUSION These findings reveal the mechanism of BP lowing in response to FUS of the vagus nerve.Clinical Relevance-This study revealed the mechanism of BP lowering in response to focused ultrasound stimulation of the vagus nerve through analyzing the changes of cardiovascular neurotransmitter levels.
Collapse
|