1
|
Barabino V, Donati della Lunga I, Callegari F, Cerutti L, Poggio F, Tedesco M, Massobrio P, Brofiga M. Investigating the interplay between segregation and integration in developing cortical assemblies. Front Cell Neurosci 2024; 18:1429329. [PMID: 39329086 PMCID: PMC11424435 DOI: 10.3389/fncel.2024.1429329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction The human brain is an intricate structure composed of interconnected modular networks, whose organization is known to balance the principles of segregation and integration, enabling rapid information exchange and the generation of coherent brain states. Segregation involves the specialization of brain regions for specific tasks, while integration facilitates communication among these regions, allowing for efficient information flow. Several factors influence this balance, including maturation, aging, and the insurgence of neurological disorders like epilepsy, stroke, or cancer. To gain insights into information processing and connectivity recovery, we devised a controllable in vitro model to mimic and investigate the effects of different segregation and integration ratios over time. Methods We designed a cross-shaped polymeric mask to initially establish four independent sub-populations of cortical neurons and analyzed how the timing of its removal affected network development. We evaluated the morphological and functional features of the networks from 11 to 18 days in vitro (DIVs) with immunofluorescence techniques and micro-electrode arrays (MEAs). Results The removal of the mask at different developmental stages of the network lead to strong variations in the degree of intercommunication among the four assemblies (altering the segregation/integration balance), impacting firing and bursting parameters. Early removal (after 5 DIVs) resulted in networks with a level of integration similar to homogeneous controls (without physical constraints). In contrast, late removal (after 15 DIVs) hindered the formation of strong inter-compartment connectivity, leading to more clustered and segregated assemblies. Discussion A critical balance between segregation and integration was observed when the mask was removed at DIV 10, allowing for the formation of a strong connectivity among the still-separated compartments, thus demonstrating the existence of a time window in network development in which it is possible to achieve a balance between segregation and integration.
Collapse
Affiliation(s)
- Valerio Barabino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Ilaria Donati della Lunga
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Francesca Callegari
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Letizia Cerutti
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Poggio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- National Institute for Nuclear Physics (INFN), Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy
- ScreenNeuroPharm S.r.l, Sanremo, Italy
| |
Collapse
|
2
|
Lassers SB, Vakilna YS, Tang WC, Brewer GJ. The flow of axonal information among hippocampal sub-regions 2: patterned stimulation sharpens routing of information transmission. Front Neural Circuits 2023; 17:1272925. [PMID: 38144878 PMCID: PMC10739322 DOI: 10.3389/fncir.2023.1272925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 12/26/2023] Open
Abstract
The sub-regions of the hippocampal formation are essential for episodic learning and memory formation, yet the spike dynamics of each region contributing to this function are poorly understood, in part because of a lack of access to the inter-regional communicating axons. Here, we reconstructed hippocampal networks confined to four subcompartments in 2D cultures on a multi-electrode array that monitors individual communicating axons. In our novel device, somal, and axonal activity was measured simultaneously with the ability to ascertain the direction and speed of information transmission. Each sub-region and inter-regional axons had unique power-law spiking dynamics, indicating differences in computational functions, with abundant axonal feedback. After stimulation, spiking, and burst rates decreased in all sub-regions, spikes per burst generally decreased, intraburst spike rates increased, and burst duration decreased, which were specific for each sub-region. These changes in spiking dynamics post-stimulation were found to occupy a narrow range, consistent with the maintenance of the network at a critical state. Functional connections between the sub-region neurons and communicating axons in our device revealed homeostatic network routing strategies post-stimulation in which spontaneous feedback activity was selectively decreased and balanced by decreased feed-forward activity. Post-stimulation, the number of functional connections per array decreased, but the reliability of those connections increased. The networks maintained a balance in spiking and bursting dynamics in response to stimulation and sharpened network routing. These plastic characteristics of the network revealed the dynamic architecture of hippocampal computations in response to stimulation by selective routing on a spatiotemporal scale in single axons.
Collapse
Affiliation(s)
- Samuel Brandon Lassers
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yash S. Vakilna
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Texas Institute of Restorative Neurotechnologies (TIRN), The University of Texas Health Science Center (UTHealth), Houston, TX, United States
| | - William C. Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Memory Impairments and Neurological Disorders (MIND) Institute, Center for Neuroscience of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|