1
|
Sun C, Mahapatra KD, Elton J, Li C, Fernando W, Lohcharoenkal W, Lapins J, Homey B, Sonkoly E, Pivarcsi A. MicroRNA-23b Plays a Tumor-Suppressive Role in Cutaneous Squamous Cell Carcinoma and Targets Ras-Related Protein RRAS2. J Invest Dermatol 2023; 143:2386-2396. [PMID: 37423552 DOI: 10.1016/j.jid.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common types of cancer with metastatic potential. MicroRNAs regulate gene expression at the post-transcriptional level. In this study, we report that miR-23b is downregulated in cSCCs and in actinic keratosis and that its expression is regulated by the MAPK signaling pathway. We show that miR-23b suppresses the expression of a gene network associated with key oncogenic pathways and that the miR-23b-gene signature is enriched in human cSCCs. miR-23b decreased the expression of FGF2 both at mRNA and protein levels and impaired the angiogenesis-inducing ability of cSCC cells. miR23b overexpression suppressed the capacity of cSCC cells to form colonies and spheroids, whereas the CRISPR/Cas9-mediated deletion of MIR23B resulted in increased colony and tumor sphere formation in vitro. In accordance with this, miR-23b-overexpressing cSCC cells formed significantly smaller tumors upon injection into immunocompromised mice with decreased cell proliferation and angiogenesis. Mechanistically, we verify RRAS2 as a direct target of miR-23b in cSCC. We show that RRAS2 is overexpressed in cSCC and that interference with its expression impairs angiogenesis and colony and tumorsphere formation. Taken together, our results suggest that miR-23b acts in a tumor-suppressive manner in cSCC, and its expression is decreased during squamous carcinogenesis.
Collapse
Affiliation(s)
- Chengxi Sun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kunal Das Mahapatra
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Elton
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chen Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Winnie Fernando
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Warangkana Lohcharoenkal
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Lapins
- Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard Homey
- Department of Dermatology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enikö Sonkoly
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andor Pivarcsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Gao C, Lai Y, Cheng L, Cheng Y, Miao A, Chen J, Yang R, Xiong F. PIP2 Alteration Caused by Elastic Modulus and Tropism of Electrospun Scaffolds Facilitates Altered BMSCs Proliferation and Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212272. [PMID: 36866457 DOI: 10.1002/adma.202212272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Indexed: 05/05/2023]
Abstract
Aligned submicron fibers have played an essential role in inducing stem cell proliferation and differentiation. In this study, it is aimed to identify the differential causes of stem cell proliferation and differentiation between bone marrow mesenchymal stem cells (BMSCs) on aligned-random fibers with different elastic modulus, and to change the differential levels through a regulatory mechanism mediated by B-cell lymphoma 6 protein(BCL-6) and miRNA-126-5p(miR-126-5p). The results showed that phosphatidylinositol(4,5)bisphosphate alterations are found in the aligned fibers compared with the random fibers, which has a regular and oriented structure, excellent cytocompatibility, regular cytoskeleton, and high differentiation potential. The same trend is actual for the aligned fibers with a lower elastic modulus. The level of proliferative differentiation genes in cells is altered by BCL-6 and miR-126-5p mediated regulatory mechanisms to make the cell distribution nearly consistent with the cell state on low elastic modulus aligned fibers. This work demonstrates the reason for the difference of cells between the two kinds of fibers and on fibers with different elastic modulus. These findings provide more insights for understanding the gene-level regulation of cell growth in tissue engineering.
Collapse
Affiliation(s)
- Chen Gao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yulin Lai
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Liang Cheng
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yifan Cheng
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Anqi Miao
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Jialong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Runhuai Yang
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
3
|
Zhuang W, Liu H, He Z, Ju J, Gao Q, Shan Z, Lei L. miR-92a-2-5p Regulates the Proliferation and Differentiation of ASD-Derived Neural Progenitor Cells. Curr Issues Mol Biol 2022; 44:2431-2442. [PMID: 35735607 PMCID: PMC9222067 DOI: 10.3390/cimb44060166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with abnormal behavior. However, the pathogenesis of ASD remains to be clarified. It has been demonstrated that miRNAs are essential regulators of ASD. However, it is still unclear how miR-92a-2-5p acts on the developing brain and the cell types directly. In this study, we used neural progenitor cells (NPCs) derived from ASD-hiPSCs as well as from neurotypical controls to examine the effects of miR-92a-2-5p on ASD-NPCs proliferation and neuronal differentiation, and whether miR-92a-2-5p could interact with genetic risk factor, DLG3 for ASD. We observed that miR-92a-2-5p upregulated in ASD-NPCs results in decreased proliferation and neuronal differentiation. Inhibition of miR-92a-2-5p could promote proliferation and neuronal differentiation of ASD-NPCs. DLG3 was negatively regulated by miR-92a-2-5p in NPCs. Our results suggest that miR-92a-2-5p is a strong risk factor for ASD and potentially contributes to neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Lei
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
4
|
Najjari A, Mehdinavaz Aghdam R, Ebrahimi SAS, Suresh K S, Krishnan S, Shanthi C, Ramalingam M. Smart piezoelectric biomaterials for tissue engineering and regenerative medicine: a review. BIOMED ENG-BIOMED TE 2022; 67:71-88. [PMID: 35313098 DOI: 10.1515/bmt-2021-0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/01/2022] [Indexed: 01/06/2023]
Abstract
Due to the presence of electric fields and piezoelectricity in various living tissues, piezoelectric materials have been incorporated into biomedical applications especially for tissue regeneration. The piezoelectric scaffolds can perfectly mimic the environment of natural tissues. The ability of scaffolds which have been made from piezoelectric materials in promoting cell proliferation and regeneration of damaged tissues has encouraged researchers in biomedical areas to work on various piezoelectric materials for fabricating tissue engineering scaffolds. In this review article, the way that cells of different tissues like cardio, bone, cartilage, bladder, nerve, skin, tendon, and ligament respond to electric fields and the mechanism of tissue regeneration with the help of piezoelectric effect will be discussed. Furthermore, all of the piezoelectric materials are not suitable for biomedical applications even if they have high piezoelectricity since other properties such as biocompatibility are vital. Seen in this light, the proper piezoelectric materials which are approved for biomedical applications are mentioned. Totally, the present review introduces the recent materials and technologies that have been used for tissue engineering besides the role of electric fields in living tissues.
Collapse
Affiliation(s)
- Aryan Najjari
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - S A Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
| | - Shoma Suresh K
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
| | - Sasirekha Krishnan
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
| | - Chittibabu Shanthi
- Biomaterials & Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - Murugan Ramalingam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
5
|
Su X, Huang Y, Chen R, Zhang Y, He M, Lü X. Metabolomics analysis of poly(l-lactic acid) nanofibers' performance on PC12 cell differentiation. Regen Biomater 2021; 8:rbab031. [PMID: 34168894 PMCID: PMC8218933 DOI: 10.1093/rb/rbab031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of this article is to reveal the influence of aligned/random poly(l-lactic acid) (PLLA) nanofibers on PC12 cell differentiation from the perspective of metabolic level. First, three materials-PLLA aligned nanofibers (PLLA AF), PLLA random nanofibers (PLLA RF) and PLLA films (control)-were prepared by electrospinning and spin coating. Their surface morphologies were characterized. Subsequently, the cell viability, cell morphology and neurite length of PC12 cells on the surface of the three materials were evaluated, indicating more neurites in the PLLA RF groups but the longer average neurite length in the PLLA AF groups. Next, the metabolite profiles of PC12 cells cultured on the surface of the three nanofibers after 12 h, 24 h and 36 h showed that, compared with the control, 51, 48 and 31 types of differential metabolites were detected at the three time points among the AF groups, respectively; and 56, 45 and 41 types among the RF groups, respectively. Furthermore, the bioinformatics analysis of differential metabolites identified two pathways and three metabolites critical to PC12 cell differentiation influenced by the nanofibers. In addition, the verification experiment on critical metabolites and metabolic pathways were performed. The integrative analysis combining cytology, metabolomics and bioinformatics approaches revealed that though both PLLA AF and RF were capable of stimulating the synthesis of neurotransmitters, the PLLA AF were more beneficial for PC12 cell differentiation, whereas the PLLA RF were less effective.
Collapse
Affiliation(s)
- Xiaoman Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Yiwen Zhang
- Department of Research, SQ Medical Device Co., Ltd, 17# Xinghuo Road, Nanjing 211500, China
| | - Meichen He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226019, China
| |
Collapse
|
6
|
The roles of MicroRNAs in neural regenerative medicine. Exp Neurol 2020; 332:113394. [DOI: 10.1016/j.expneurol.2020.113394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
|
7
|
Nazeri N, Karimi R, Ghanbari H. The effect of surface modification of poly-lactide-co-glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. J Biomed Mater Res A 2020; 109:159-169. [PMID: 32445230 DOI: 10.1002/jbm.a.37013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
The presence of biological cues to promote the attachment, proliferation, and differentiation of neuronal cells is important in the process of nerve regeneration. In this study, laminin as a neurite promoting protein, has been used to modify poly-lactide-co-glycolide/carbon nanotube (PLGA/CNT) electrospun nanofibrous scaffolds by means of either mussel-inspired poly(dopamine) (PD) coating or via direct physical adsorption as a simple route for the functionalization of biomaterials. The laminin-modified scaffolds were characterized by a combination of field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and contact angle measurements. Subsequently, various properties of scaffolds such as degradation time, amount of attached laminin and the rate of CNT release were investigated. The synergistic effect of topographical and biological cues for PC12 cell attachment, proliferation, and differentiation were then studied by SEM and confocal microscopy. The results of degradation study showed that laminin-modified scaffolds were biodegradable with good structural integrity that persisted about 4 weeks. The amount of laminin attached to the PLGA/CNT and PLGA/CNT-PD scaffolds was 3.12 ± 0.6 and 3.04 ± 071 μg per mg of the scaffold, respectively. Although laminin-modified scaffolds could improve cell proliferation identically, neurite extensions on the PLGA/CNT scaffold modified via PD coating (PLGA/CNT-PD-lam scaffold) were significantly longer than those observed on PLGA/CNT scaffold modified via physical adsorption (PLGA/CNT-lam scaffold) and unmodified scaffolds. Together, these results indicated that surface modification via PD coating could be a promising strategy to fabricate biomimetic scaffolds capable of sustaining longer neuronal growth for nerve tissue engineering.
Collapse
Affiliation(s)
- Niloofar Nazeri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Biosci Rep 2019; 39:BSR20181748. [PMID: 30606743 PMCID: PMC6340955 DOI: 10.1042/bsr20181748] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown the importance of cell–substrate interaction on neurone outgrowth, where the Young’s modulus of the matrix plays a crucial role on the neurite length, migration, proliferation, and morphology of neurones. In the present study, PC12 cells were selected as the representative neurone to be cultured on hydrogel substrates with different stiffness to explore the effect of substrate stiffness on the neurone outgrowth. By adjusting the concentration of gelatin methacryloyl (GelMA), the hydrogel substrates with the variation of stiffnesses (indicated by Young’s modulus) from approximately 3–180 KPa were prepared. It is found that the stiffness of GelMA substrates influences neuronal outgrowth, including cell viability, adhesion, spreading, and average neurite length. Our results show a critical range of substrate’s Young’s modulus that support PC12 outgrowth, and modulate the cell characteristics and morphology. The present study provides an insight into the relationship between the stiffness of GelMA hydrogel substrates and PC12 cell outgrowth, and helps the design and optimization of tissue engineering scaffolds for nerve regeneration.
Collapse
|
9
|
Abstract
OBJECTIVE Spinal cord injury (SCI) is associated with modulation of different microRNAs (miRs). This study aims to explore the role of miR-25 in PC-12 cells to reveal the potential of miR-25 in SCI treatment. METHODS SCI model was established in C57BL/6 mice, then miR-expression in the injured spinal cords were detected by qRT-PCR. PC-12 cells were exposed to H2O2 conditions to establish an in vitro model of SCI. PC-12 cells were transfected with expressing vector or antisense oligonucleotides (ASO) of miR-25. The effects of miR-25 expression on H2O2-induced oxidative damage was evaluated by detection of cell viability, apoptosis, ROS activity, HIF-α and γH2A expression, and the level of inflammatory mediators. The expression of Nrf2 in cells was silenced by transfection with Nrf2 siRNA, and the effects of Nrf2 silence on miR-25-mediated PC-12 cells were detected. Besides, the expression of main proteins in Wnt/β-catenin and PI3 K/AKT/ERK signaling were assessed. RESULTS miR-25 was low expressed in injured spinal cords. miR-25 protected PC-12 cells against H2O2-induced oxidative damage, as evidenced by significant suppression in cell apoptosis, increase in cell viability, decrease in the level of ROS, HIF-α and γH2A, and decrease in inflammatory mediators (IL-1β, TNF-α, IL-6, and MCP-1). However, Nrf2 silence abolished the protective functions of miR-25 on H2O2-induced damage. Furthermore, we found that Wnt/β-catenin and PI3 K/AKT/ERK signaling were activated by miR-25. CONCLUSIONS miR-25 protects PC-12 cells against H2O2-induced oxidative damage though regulation of Nrf2 and activation of Wnt/β-catenin and PI3 K/AKT/ERK signaling.
Collapse
Affiliation(s)
| | - Shizhen Niu
- Correspondence to: Shizhen Niu, Department of Spine Surgery, Jining No.1 People's Hospital, No. 6, Jiankang Road, Jining 272000, China.
| |
Collapse
|
10
|
Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis. Colloids Surf B Biointerfaces 2018; 167:93-103. [DOI: 10.1016/j.colsurfb.2018.03.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022]
|
11
|
Aijie C, Xuan L, Huimin L, Yanli Z, Yiyuan K, Yuqing L, Longquan S. Nanoscaffolds in promoting regeneration of the peripheral nervous system. Nanomedicine (Lond) 2018; 13:1067-1085. [PMID: 29790811 DOI: 10.2217/nnm-2017-0389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability to surgically repair peripheral nerve injuries is urgently needed. However, traditional tissue engineering techniques, such as autologous nerve transplantation, have some limitations. Therefore, tissue engineered autologous nerve grafts have become a suitable choice for nerve repair. Novel tissue engineering techniques derived from nanostructured conduits have been shown to be superior to other successful functional neurological structures with different scaffolds in terms of providing the required structures and properties. Additionally, different biomaterials and growth factors have been added to nerve scaffolds to produce unique biological effects that promote nerve regeneration and functional recovery. This review summarizes the application of different nanoscaffolds in peripheral nerve repair and further analyzes how the nanoscaffolds promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Chen Aijie
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction & Detection in Tissue Engineering, Guangzhou 510515, China
| | - Lai Xuan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Liang Huimin
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Zhang Yanli
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Kang Yiyuan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Lin Yuqing
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction & Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
12
|
Zhang F, Chen K, Tao H, Kang T, Xiong Q, Zeng Q, Liu Y, Jiang S, Chen M. miR-25-3p, Positively Regulated by Transcription Factor AP-2α, Regulates the Metabolism of C2C12 Cells by Targeting Akt1. Int J Mol Sci 2018. [PMID: 29518009 PMCID: PMC5877634 DOI: 10.3390/ijms19030773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
miR-25, a member of the miR-106b-25 cluster, has been reported as playing an important role in many biological processes by numerous studies, while the role of miR-25 in metabolism and its transcriptional regulation mechanism remain unclear. In this study, gain-of-function and loss-of-function assays demonstrated that miR-25-3p positively regulated the metabolism of C2C12 cells by attenuating phosphoinositide 3-kinase (PI3K) gene expression and triglyceride (TG) content, and enhancing the content of adenosine triphosphate (ATP) and reactive oxygen species (ROS). Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the AKT serine/threonine kinase 1 (Akt1) 3′ untranslated region (3′UTR). The core promoter of miR-25-3p was identified, and the transcription factor activator protein-2α (AP-2α) significantly increased the expression of mature miR-25-3p by binding to its core promoter in vivo, as indicated by the chromatin immunoprecipitation (ChIP) assay, and AP-2α binding also downregulated the expression of Akt1. Taken together, our findings suggest that miR-25-3p, positively regulated by the transcription factor AP-2α, enhances C2C12 cell metabolism by targeting the Akt1 gene.
Collapse
Affiliation(s)
- Feng Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kun Chen
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hu Tao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Tingting Kang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Qianhui Zeng
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
13
|
Zhang K, Huang D, Yan Z, Wang C. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. J Biomed Mater Res A 2017; 105:1900-1910. [PMID: 28256802 DOI: 10.1002/jbm.a.36053] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
Biomimicing topological structure of natural nerve tissue to direct axon growth and controlling sustained release of moderate neurotrophic factors are extremely propitious to the functional recovery of damaged nervous systems. In this study, the heparin/collagen encapsulating nerve growth factor (NGF) multilayers were coated onto the aligned poly-L-lactide (PLLA) nanofibrous scaffolds via a layer-by-layer (LbL) self-assembly technique to combine biomolecular signals, and physical guidance cues for peripheral nerve regeneration. Scanning electronic microscopy (SEM) revealed that the surface of aligned PLLA nanofibrous scaffolds coated with heparin/collagen multilayers became rougher and appeared some net-like filaments and protuberances in comparison with PLLA nanofibrous scaffolds. The heparin/collagen multilayers did not destroy the alignment of nanofibers. X-ray photoelectron spectroscopy and water contact angles displayed that heparin and collagen were successfully coated onto the aligned PLLA nanofibrous scaffolds and improved its hydrophilicity. Three-dimensional (3 D) confocal microscopy images further demonstrated that collagen, heparin, and NGF were not only coated onto the surface of aligned PLLA nanofibrous scaffolds but also permeated into the inner of scaffolds. Moreover, NGF presented a sustained release for 2 weeks from aligned nanofibrous scaffolds coated with 5.5 bilayers or above and remained good bioactivity. The heparin/collagen encapsulating NGF multilayers coated aligned nanofibrous scaffolds, in particular 5.5 bilayers or above, was more beneficial to Schwann cells (SCs) proliferation and PC12 cells differentiation as well as the SC cytoskeleton and neurite growth along the direction of nanofibrous alignment compared to the aligned PLLA nanofibrous scaffolds. This novel scaffolds combining sustained release of bioactive NGF and aligned nanofibrous topography presented an excellent potential in peripheral nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1900-1910, 2017.
Collapse
Affiliation(s)
- Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Dianwu Huang
- College of Civil Engineering and Architecture, Jiaxing University, Jiaxing, 314001, China
| | - Zhiyong Yan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Chunyang Wang
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
14
|
Lü X, Yang F, Huang Y, Yu Y. Role of integrin in influencing differentiation of PC12 cell grown on PLLA-aligned nanofiber: a mRNA–microRNA–protein integrative study. Regen Biomater 2016. [DOI: 10.1093/rb/rbw040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Fei Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yadong Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
15
|
Mercado AT, Yeh JM, Chin TY, Chen WS, Chen-Yang YW, Chen CY. The effect of chemically modified electrospun silica nanofiber on the mRNA and miRNA expression profile of neural stem cell differentiation. J Biomed Mater Res A 2016; 104:2730-43. [DOI: 10.1002/jbm.a.35819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/21/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Augustus T. Mercado
- Department of Bioscience Technology; Chung Yuan Christian University; Chung-Li 32023 Taiwan
- Department of Chemistry; Chung Yuan Christian University; Chung-Li 32023 Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry; Chung Yuan Christian University; Chung-Li 32023 Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University; Chung-Li 32023 Taiwan
| | - Ting Yu Chin
- Department of Bioscience Technology; Chung Yuan Christian University; Chung-Li 32023 Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University; Chung-Li 32023 Taiwan
| | - Wen Shuo Chen
- Department of Chemistry; Chung Yuan Christian University; Chung-Li 32023 Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University; Chung-Li 32023 Taiwan
| | - Yui Whei Chen-Yang
- Department of Chemistry; Chung Yuan Christian University; Chung-Li 32023 Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University; Chung-Li 32023 Taiwan
| | - Chung-Yung Chen
- Department of Bioscience Technology; Chung Yuan Christian University; Chung-Li 32023 Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University; Chung-Li 32023 Taiwan
| |
Collapse
|
16
|
Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 2016; 37:131-42. [PMID: 27063493 DOI: 10.1016/j.actbio.2016.04.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED The graphene oxide (GO) has attracted tremendous attention in biomedical fields. In order to combine the unique physicochemical properties of GO nanosheets with topological structure of aligned nanofibrous scaffolds for nerve regeneration, the GO nanosheets were coated onto aligned and aminolyzed poly-l-lactide (PLLA) nanofibrous scaffolds. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) revealed that the surface of aligned PLLA nanofibers after being coated with GO became rougher than those of the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. The GO nanosheets did not destroy the alignment of nanofibers. The characterizations of X-ray photoelectron spectroscopy (XPS) and water contact angle displayed that the aligned PLLA nanofibrous scaffolds were introduced with hydrophilic groups such as NH2, COOH, and OH after aminolysis and GO nanosheets coating, showing better hydrophilicity. The GO-coated and aligned PLLA nanofibrous scaffolds significantly promoted Schwann cells (SCs) proliferation with directed cytoskeleton along the nanofibers compared with the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. These scaffolds also greatly improved the proliferation of rat pheochromocytoma 12 (PC12) cells, and significantly promoted their differentiation and neurite growth along the nanofibrous alignment in the presence of nerve growth factor (NGF). This type of scaffolds with nanofibrous surface topography and GO nanosheets is expected to show better performance in nerve regeneration. STATEMENT OF SIGNIFICANCE Recovery of damaged nerve functions remains a principal clinical challenge in spite of surgical intervention and entubulation. The use of aligned fibrous scaffolds provides suitable microenvironment for nerve cell attachment, proliferation and migration, enhancing the regeneration outcome of nerve tissue. Surface modification is generally required for the synthetic polymeric fibers by laminin, fibronectin and YIGSR peptides to stimulate specific cell functions and neurite outgrowth. Yet these proteins or peptides present the poor processibility, limited availability, and high cost, influencing their application in clinic. In this work, we combined GO nanosheets and topological structure of aligned nanofibrous scaffolds to direct cell migration, proliferation, and differentiation, and to induce neurite outgrowth for nerve regeneration. The GO coating improved several biomedical properties of the aligned PLLA nanofibrous scaffolds including surface roughness, hydrophilicity and promotion of cells/material interactions, which significantly promoted SCs growth and regulated cell orientation, and induced PC12 cells differentiation and neurite growth. The design of this type of structure is of both scientific and technical importance, and possesses broad interest in the fields of biomaterials, tissue engineering and regenerative medicine.
Collapse
|
17
|
Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydr Polym 2015; 140:104-12. [PMID: 26876833 DOI: 10.1016/j.carbpol.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Abstract
Nanofibrous nerve guides have gained huge interest in supporting the peripheral nerve regeneration due to their abilities to simulate the topography, mechanical, biological and extracellular matrix morphology of native tissue. Gum tragacanth (GT) is a biocompatible mixture of polysaccharides that has been used in biomedical applications. During this study, we fabricated aligned and random nanofibers from poly(l-lactic acid) and gum tragacanth (PLLA/GT) in various ratios (100:0, 75:25, and 50:50) by electrospinning. Scanning electron microscope demonstrated smooth and uniform nanofibers with diameters in the range of 733±65nm and 226±73nm for align PLLA and random PLLA/GT 50:50 nanofibers, respectively. FTIR analysis, contact angle, in vitro biodegradation and tensile measurements were carried out to evaluate the chemical and mechanical properties of the different scaffolds. PLLA/GT 75:25 exhibited the most balanced properties compared to other scaffolds and was used for in vitro culture of nerve cells (PC12) to assess the potential of using these scaffolds as a substrate for nerve regeneration. The cells were found to attach and proliferate on aligned PLLA/GT 75:25 scaffolds, expressing bi-polar neurite extensions and the orientation of nerve cells was along the direction of the fiber alignment. Results of 8 days of in vitro culture of PC12 cells on aligned PLLA/GT 75:25 nanofibers, showed 20% increase in cell proliferation compared to PLLA/GT 75:25 random nanofibers. PLLA/GT 75:25 aligned nanofibers acted as a favorable cue to support neurite outgrowth and nerve cell elongation compared with PLLA nanofibers. Our results showed that aligned PLLA/GT 75:25 nanofibers are promising substrates for application as bioengineered grafts for nerve tissue regeneration.
Collapse
Affiliation(s)
| | - Molamma P Prabhakaran
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore
| |
Collapse
|