1
|
Petoe MA, Abbott CJ, Titchener SA, Kolic M, Kentler WG, Nayagam DAX, Baglin EK, Kvansakul J, Barnes N, Walker JG, Karapanos L, McGuinness MB, Ayton LN, Luu CD, Allen PJ. A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: A Single-Arm Clinical Trial of Feasibility. OPHTHALMOLOGY SCIENCE 2025; 5:100525. [PMID: 39328823 PMCID: PMC11426041 DOI: 10.1016/j.xops.2024.100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 09/28/2024]
Abstract
Purpose To assess the feasibility of a second-generation (44-channel) suprachoroidal retinal prosthesis for provision of functional vision in recipients with end-stage retinitis pigmentosa (RP) over 2.7 years. Design Prospective, single-arm, unmasked interventional clinical trial. Participants Four participants, with advanced RP and bare-light perception vision. Methods The 44-channel suprachoroidal retinal prosthesis was implanted in the worse-seeing eye. Device stability, functionality, and adverse events were investigated at approximately 12-week intervals up to 140 weeks (2.7 years) postdevice activation. Main Outcome Measures Serious adverse event (SAE) reporting, visual response outcomes, functional vision outcomes, and quality-of-life outcomes. Results All 4 participants (aged 39-66 years, 3 males) were successfully implanted in 2018, and there were no device-related SAEs over the duration of the study. A mild postoperative subretinal hemorrhage was detected in 2 recipients, which cleared spontaneously within 2 weeks. OCT confirmed device stability and position under the macula. Improvements in localization abilities were demonstrated for all 4 participants in screen-based, tabletop, and orientation and mobility tasks. In addition, 3 of 4 participants recorded improvements in motion discrimination and 2 of 4 participants recorded substantial improvements in spatial discrimination and identification of tabletop objects. Participants reported their unsupervised use of the device included exploring new environments, detecting people, and safely navigating around obstacles. A positive effect of the implant on participants' daily lives in their local environments was confirmed by an orientation and mobility assessor and participant self-report. Emotional well-being was not impacted by device implantation or usage. Conclusions The completed clinical study demonstrates that the suprachoroidal prosthesis raises no safety concerns and provides improvements in functional vision, activities of daily living, and observer-rated quality of life. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Matthew A Petoe
- Bionics Institute, Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel A Titchener
- Bionics Institute, Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - William G Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - David A X Nayagam
- Bionics Institute, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Pathology, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Elizabeth K Baglin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jessica Kvansakul
- Bionics Institute, Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Nick Barnes
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Janine G Walker
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
- Health & Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Lewis Karapanos
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Myra B McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Vitreoretinal Unit, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Kartha A, Sadeghi R, Bradley C, Tran C, Gee W, Dagnelie G. Measuring visual information gathering in individuals with ultra low vision using virtual reality. Sci Rep 2023; 13:3143. [PMID: 36823360 PMCID: PMC9950080 DOI: 10.1038/s41598-023-30249-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
People with ULV (visual acuity ≤ 20/1600 or 1.9 logMAR) lack form vision but have rudimentary levels of vision that can be used for a range of activities in daily life. However, current clinical tests are designed to assess form vision and do not provide information about the range of visually guided activities that can be performed in daily life using ULV. This is important to know given the growing number of clinical trials that recruit individuals with ULV (e.g., gene therapy, stem cell therapy) or restore vision to the ULV range in the blind (visual prosthesis). In this study, we develop a set of 19 activities (items) in virtual reality involving spatial localization/detection, motion detection, and direction of motion that can be used to assess visual performance in people with ULV. We estimated measures of item difficulty and person ability on a relative d prime (d') axis using a signal detection theory based analysis for latent variables. The items represented a range of difficulty levels (- 1.09 to 0.39 in relative d') in a heterogeneous group of individuals with ULV (- 0.74 to 2.2 in relative d') showing the instrument's utility as an outcome measure in clinical trials.
Collapse
Affiliation(s)
- Arathy Kartha
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Roksana Sadeghi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chris Bradley
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chau Tran
- BaltiVirtual Inc., Baltimore, MD, USA
| | - Will Gee
- BaltiVirtual Inc., Baltimore, MD, USA
| | - Gislin Dagnelie
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Roh H, Otgondemberel Y, Im M. Short pulses of epiretinal prostheses evoke network-mediated responses in retinal ganglion cells by stimulating presynaptic neurons. J Neural Eng 2022; 19. [PMID: 36055185 DOI: 10.1088/1741-2552/ac8ed7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Microelectronic retinal implant aims to restore functional vision with electric stimulation. Short pulses are generally known to directly activate retinal ganglion cells (RGCs) with a notion of one or two spike(s) per pulse. In the present work, we systematically explore network-mediated responses that arise from various short pulses in both normal and degenerate retinas. APPROACH Cell-attached patch clamping was used to record spiking responses of RGCs in wild-type (C57BL/6J) and retinal degeneration (rd10) mice. Alpha RGCs of the mouse retinas were targeted by their large soma sizes and classified by their responses to spot flashes. Then, RGCs were electrically stimulated by various conditions such as duration (100-460 μs), count (1-10), amplitude (100-400 μA), and repeating frequency (10-40 Hz) of short pulses. Also, their responses were compared with each own response to a single 4-ms-long pulse which is known to evoke strong indirect responses. MAIN RESULTS Short pulses evoked strong network-mediated responses not only in both ON and OFF types of RGCs in the healthy retinas but also in RGCs of the severely degenerate retina. However, the spike timing consistency across repeats not decreased significantly in the rd10 RGCs compared to the healthy ON and OFF RGCs. Network-mediated responses of ON RGCs were highly dependent on the current amplitude of stimuli but much less on the pulse count and the repetition frequency. In contrast, responses of OFF RGCs were more influenced by the number of stimuli than the current amplitude. SIGNIFICANCE Our results demonstrate that short pulses also elicit indirect responses by activating presynaptic neurons. In the case of the commercial retinal prostheses using repeating short pulses, there is a possibility that the performance of clinical devices is highly related to the preserved retinal circuits. Therefore, examination of surviving retinal neurons in patients would be necessary to improve the efficacy of retinal prostheses.
Collapse
Affiliation(s)
- Hyeonhee Roh
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Korea (the Republic of)
| | - Yanjinsuren Otgondemberel
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Korea (the Republic of)
| | - Maesoon Im
- Brain Science Institute, Center for BioMicrosystems, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, L7325B, Seoul, Seoul, Seoul, 02792, Korea (the Republic of)
| |
Collapse
|
4
|
|
5
|
Fauvel T, Chalk M. Human-in-the-loop optimization of visual prosthetic stimulation. J Neural Eng 2022; 19. [PMID: 35667363 DOI: 10.1088/1741-2552/ac7615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Retinal prostheses are a promising strategy to restore sight to patients with retinal degenerative diseases. These devices compensate for the loss of photoreceptors by electrically stimulating neurons in the retina. Currently, the visual function that can be recovered with such devices is very limited. This is due, in part, to current spread, unintended axonal activation, and the limited resolution of existing devices. Here we show, using a recent model of prosthetic vision, that optimizing how visual stimuli are encoded by the device can help overcome some of these limitations, leading to dramatic improvements in visual perception. APPROACH We propose a strategy to do this in practice, using patients' feedback in a visual task. The main challenge of our approach comes from the fact that, typically, one only has access to a limited number of noisy responses from patients. We propose two ways to deal with this: first, we use a model of prosthetic vision to constrain and simplify the optimization. We show that, if one knew the parameters of this model for a given patient, it would be possible to greatly improve their perceptual performance. Second we propose a preferential Bayesian optimization to efficiently learn these model parameters for each patient, using minimal trials. MAIN RESULTS To test our approach, we presented healthy subjects with visual stimuli generated by a recent model of prosthetic vision, to replicate the perceptual experience of patients fitted with an implant. Our optimization procedure led to significant and robust improvements in perceived image quality, that transferred to increased performance in other tasks. SIGNIFICANCE Importantly, our strategy is agnostic to the type of prosthesis and thus could readily be implemented in existing implants.
Collapse
Affiliation(s)
- Tristan Fauvel
- Institut de la Vision, INSERM, 17 Rue Moreau, Paris, Île-de-France, 75014, FRANCE
| | - Matthew Chalk
- Institut de l a Vision, INSERM, 17 Rue Moreau, Paris, 75014, FRANCE
| |
Collapse
|
6
|
Christie B, Sadeghi R, Kartha A, Caspi A, Tenore FV, Klatzky RL, Dagnelie G, Billings S. Sequential epiretinal stimulation improves discrimination in simple shape discrimination tasks only. J Neural Eng 2022; 19. [PMID: 35613043 DOI: 10.1088/1741-2552/ac7326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical stimulation of the retina can elicit flashes of light called phosphenes, which can be used to restore rudimentary vision for people with blindness. Functional sight requires stimulation of multiple electrodes to create patterned vision, but phosphenes tend to merge together in an uninterpretable way. Sequentially stimulating electrodes in human visual cortex has recently demonstrated that shapes could be "drawn" with better perceptual resolution relative to simultaneous stimulation. The goal of this study was to evaluate if sequential stimulation would also form clearer shapes when the retina is the neural target. APPROACH Two human participants with retinitis pigmentosa who had Argus® II retinal prostheses participated in this study. We evaluated different temporal parameters for sequential stimulation in phosphene shape mapping and forced-choice discrimination tasks. For the discrimination tasks, performance was compared between stimulating electrodes simultaneously versus sequentially. MAIN RESULTS Phosphenes elicited by different electrodes were reported as vastly different shapes. Sequential electrode stimulation outperformed simultaneous stimulation in simple discrimination tasks, in which shapes were created by stimulating 3-4 electrodes, but not in more complex discrimination tasks involving 5+ electrodes. For sequential stimulation, the optimal pulse train duration was 200 ms when stimulating at 20 Hz and the optimal gap interval was tied between 0 and 50 ms. Efficacy of sequential stimulation also depended strongly on selecting electrodes that elicited phosphenes with similar shapes and sizes. SIGNIFICANCE An epiretinal prosthesis can produce coherent simple shapes with a sequential stimulation paradigm, which can be used as rudimentary visual feedback. However, success in creating more complex shapes, such as letters of the alphabet, is still limited. Sequential stimulation may be most beneficial for epiretinal prostheses in simple tasks, such as basic navigation, rather than complex tasks such as object identification.
Collapse
Affiliation(s)
- Breanne Christie
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, UNITED STATES
| | - Roksana Sadeghi
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, Maryland, 21205, UNITED STATES
| | - Arathy Kartha
- Department of Ophthalmology, Johns Hopkins School of Medicine, 1800 Orleans St., Baltimore, Maryland, 21287, UNITED STATES
| | - Avi Caspi
- Jerusalem College of Technology, Ha-Va'ad ha-Le'umi St 21, Jerusalem, 91160, ISRAEL
| | - Francesco V Tenore
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, UNITED STATES
| | - Roberta L Klatzky
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213-3815, UNITED STATES
| | - Gislin Dagnelie
- Department of Ophthalmology, Johns Hopkins School of Medicine, 1800 Orleans St., Baltimore, Maryland, 21287, UNITED STATES
| | - Seth Billings
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland, 20723-6005, UNITED STATES
| |
Collapse
|
7
|
Miyoshi T, Morimoto T, Sawai H, Fujikado T. Spatial Resolution of Suprachoroidal-Transretinal Stimulation Estimated by Recording Single-Unit Activity From the Cat Lateral Geniculate Nucleus. Front Neurosci 2021; 15:717429. [PMID: 34720855 PMCID: PMC8549691 DOI: 10.3389/fnins.2021.717429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Retinal prostheses are devices used to restore visual sensation in patients suffering from photoreceptor degeneration, such as retinitis pigmentosa. Suprachoroidal–transretinal stimulation (STS) is a prosthesis with retinal electrodes located in the sclera. STS has the advantage that it is safer than epiretinal or subretinal prostheses, as the implant is not directly attached to the retinal tissue. We have previously reported feasibility of STS with animal experiments and clinical trials. However, functional evaluation with neurophysiological experiments is still largely missing. To estimate the spatial resolution of STS, single-unit activities in response to STS were recorded from relay cells in the dorsal lateral geniculate nucleus of cats, and the response probability of the units was analyzed in relation to the distance between the stimulus location and the receptive field of each recorded unit. A platinum electrode was attached to the sclera after lamellar resection, and the return electrode was placed in the vitreous. The stimulating current, which ranged from 50 to 500 μA, was applied between these electrodes, and the probability of spike responses occurring just after retinal stimulation was measured. The distance at half-maximum of response was determined from the collected response probabilities as a function of stimulus intensity for all units characterized by their distances from the receptive field center to the stimulation point. As the stimulation became weaker, this distance decreased to 1.8° at 150 and 100 μA. As another estimation, the radius of 25% response probability was 1.4° at 100 μA. The diameter of the stimulated cat retinal area, 3.6° or 2.8°, corresponds to human visual acuity of 0.005 or 0.007, or finger counting. Considering the lower hazard to the retina of STS and its potentially large visual field coverage, STS is an attractive method for retinal prosthetic device development.
Collapse
Affiliation(s)
- Tomomitsu Miyoshi
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takeshi Morimoto
- Department of Applied Visual Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hajime Sawai
- Graduate School of Nursing, Osaka Prefecture University, Habikino, Japan
| | - Takashi Fujikado
- Department of Applied Visual Science, Graduate School of Medicine, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Hallum LE, Dakin SC. Retinal Implantation of Electronic Vision Prostheses to Treat Retinitis Pigmentosa: A Systematic Review. Transl Vis Sci Technol 2021; 10:8. [PMID: 34383874 PMCID: PMC8362638 DOI: 10.1167/tvst.10.10.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a hereditary disease causing photoreceptor degeneration and permanent vision loss. Retinal implantation of a stimulating electrode array is a new treatment for RP, but quantification of its efficacy is the subject of ongoing work. This review evaluates vision-related outcomes resulting from retinal implantation in participants with RP. Methods We searched MEDLINE and Embase for journal articles published since January 1, 2015. We selected articles describing studies of implanted participants that reported the postimplantation measurement of vision. We extracted study information including design, participants’ residual vision, comparators, and assessed outcomes. To assess the risk of bias, we used signaling questions and a target trial. Results Our search returned 425 abstracts. We reviewed the full text of 34 articles. We judged all studies to be at high risk of bias owing to the study design or experimental conduct. Regarding design, studies lacked the measures that typical clinical trials take to protect against bias (e.g., control groups and masking). Regarding experimental conduct, outcome measures were rarely comparable before and after implantation, and psychophysical methods were prone to bias (subjective, not forced choice, methods). The most common comparison found was between postimplantation visual function with the device powered off versus on. This comparison is at high risk of bias. Conclusions There is a need for high-quality evidence of efficacy of retinal implantation to treat RP. Translational Relevance For patients and clinicians to make informed choices about RP treatment, visual function restored by retinal implantation must be properly quantified and reported.
Collapse
Affiliation(s)
- Luke E Hallum
- Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand
| | - Steven C Dakin
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Karapanos L, Abbott CJ, Ayton LN, Kolic M, McGuinness MB, Baglin EK, Titchener SA, Kvansakul J, Johnson D, Kentler WG, Barnes N, Nayagam DAX, Allen PJ, Petoe MA. Functional Vision in the Real-World Environment With a Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis. Transl Vis Sci Technol 2021; 10:7. [PMID: 34383875 PMCID: PMC8362639 DOI: 10.1167/tvst.10.10.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose In a clinical trial (NCT03406416) of a second-generation (44-channel) suprachoroidal retinal prosthesis implanted in subjects with late-stage retinitis pigmentosa (RP), we assessed performance in real-world functional visual tasks and emotional well-being. Methods The Functional Low-Vision Observer Rated Assessment (FLORA) and Impact of Vision Impairment-Very Low Vision (IVI-VLV) instruments were administered to four subjects before implantation and after device fitting. The FLORA contains 13 self-reported and 35 observer-reported items ranked for ease of conducting task (impossible-easy, central tendency given as mode). The IVI-VLV instrument quantified the impact of low vision on daily activities and emotional well-being. Results Three subjects completed the FLORA for two years after device fitting; the fourth subject ceased participation in the FLORA after fitting for reasons unrelated to the device. For all subjects at each post-fitting visit, the mode ease of task with device ON was better or equal to device OFF. Ease of task improved over the first six months with device ON, then remained stable. Subjects reported improvements in mobility, functional vision, and quality of life with device ON. The IVI-VLV suggested self-assessed vision-related quality of life was not impacted by device implantation or usage. Conclusions Subjects demonstrated sustained improved ease of task scores with device ON compared to OFF, indicating the device has a positive impact in the real-world setting. Translational Relevance Our suprachoroidal retinal prosthesis shows potential utility in everyday life, by enabling an increased environmental awareness and improving access to sensory information for people with end-stage RP.
Collapse
Affiliation(s)
- Lewis Karapanos
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Carla J. Abbott
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Lauren N. Ayton
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
| | - Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth K. Baglin
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
| | - Samuel A. Titchener
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Jessica Kvansakul
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Dean Johnson
- Specialised Orientation and Mobility, Melbourne, VIC, Australia
| | - William G. Kentler
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Nick Barnes
- Research School of Engineering, Australian National University, Canberra, ACT, Australia
| | - David A. X. Nayagam
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Pathology, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Penelope J. Allen
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Matthew A. Petoe
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Petoe MA, Titchener SA, Kolic M, Kentler WG, Abbott CJ, Nayagam DAX, Baglin EK, Kvansakul J, Barnes N, Walker JG, Epp SB, Young KA, Ayton LN, Luu CD, Allen PJ. A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Interim Clinical Trial Results. Transl Vis Sci Technol 2021; 10:12. [PMID: 34581770 PMCID: PMC8479573 DOI: 10.1167/tvst.10.10.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To report the initial safety and efficacy results of a second-generation (44-channel) suprachoroidal retinal prosthesis at 56 weeks after device activation. Methods Four subjects, with advanced retinitis pigmentosa and bare-light perception only, enrolled in a phase II trial (NCT03406416). A 44-channel electrode array was implanted in a suprachoroidal pocket. Device stability, efficacy, and adverse events were investigated at 12-week intervals. Results All four subjects were implanted successfully and there were no device-related serious adverse events. Color fundus photography indicated a mild postoperative subretinal hemorrhage in two recipients, which cleared spontaneously within 2 weeks. Optical coherence tomography confirmed device stability and position under the macula. Screen-based localization accuracy was significantly better for all subjects with device on versus device off. Two subjects were significantly better with the device on in a motion discrimination task at 7, 15, and 30°/s and in a spatial discrimination task at 0.033 cycles per degree. All subjects were more accurate with the device on than device off at walking toward a target on a modified door task, localizing and touching tabletop objects, and detecting obstacles in an obstacle avoidance task. A positive effect of the implant on subjects' daily lives was confirmed by an orientation and mobility assessor and subject self-report. Conclusions These interim study data demonstrate that the suprachoroidal prosthesis is safe and provides significant improvements in functional vision, activities of daily living, and observer-rated quality of life. Translational Relevance A suprachoroidal prosthesis can provide clinically useful artificial vision while maintaining a safe surgical profile.
Collapse
Affiliation(s)
- Matthew A Petoe
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel A Titchener
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - William G Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - David A X Nayagam
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, St. Vincent's Hospital, Victoria, Australia
| | - Elizabeth K Baglin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jessica Kvansakul
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Nick Barnes
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Janine G Walker
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia.,Health & Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Kiera A Young
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.,Department of Optometry and Vision Sciences, University of Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
11
|
Gebrehiwot AN, Kato T, Nakazawa K. Inducing lateralized phosphenes over the occipital lobe using transcranial magnetic stimulation to navigate a virtual environment. PLoS One 2021; 16:e0249996. [PMID: 33852643 PMCID: PMC8046218 DOI: 10.1371/journal.pone.0249996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation involving visual areas of the brain produces artificial light percepts called phosphenes. These visual percepts have been extensively investigated in previous studies involving intracortical microsimulation (ICMS) and serve as the basis for developing a visual prosthesis for the blind. Although advances have been achieved, many challenges still remain with implementing a functional ICMS for visual rehabilitation purposes. Transcranial magnetic stimulation (TMS) over the primary occipital lobe offers an alternative method to produce phosphenes non-invasively. A main challenge facing blind individuals involves navigation. Within the scientific community, methods to evaluate the ability of a visual prosthesis to facilitate in navigation has been neglected. In this study, we investigate the effectiveness of evoking lateralized phosphenes to navigate a computer simulated virtual environment. More importantly, we demonstrate how virtual environments along with the development of a visual prosthesis share a mutual relationship benefiting both patients and researchers. Using two TMS devices, a pair of 40mm figure-of-eight coils were placed over each occipital hemisphere resulting in lateralized phosphene perception. Participants were tasked with making a series of left and right turns using peripheral devices depending on the visual hemifield in which a phosphene is present. If a participant was able to accurately perceive all ten phosphenes, the simulated target is able to advance and fully exit the virtual environment. Our findings demonstrate that participants can interpret lateralized phosphenes while highlighting the integration of computer based virtual environments to evaluate the capability of a visual prosthesis during navigation.
Collapse
Affiliation(s)
| | - Tatsuya Kato
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Titchener SA, Kvansakul J, Shivdasani MN, Fallon JB, Nayagam DAX, Epp SB, Williams CE, Barnes N, Kentler WG, Kolic M, Baglin EK, Ayton LN, Abbott CJ, Luu CD, Allen PJ, Petoe MA. Oculomotor Responses to Dynamic Stimuli in a 44-Channel Suprachoroidal Retinal Prosthesis. Transl Vis Sci Technol 2020; 9:31. [PMID: 33384885 PMCID: PMC7757638 DOI: 10.1167/tvst.9.13.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate oculomotor behavior in response to dynamic stimuli in retinal implant recipients. Methods Three suprachoroidal retinal implant recipients performed a four-alternative forced-choice motion discrimination task over six sessions longitudinally. Stimuli were a single white bar (“moving bar”) or a series of white bars (“moving grating”) sweeping left, right, up, or down across a 42″ monitor. Performance was compared with normal video processing and scrambled video processing (randomized image-to-electrode mapping to disrupt spatiotemporal structure). Eye and head movement was monitored throughout the task. Results Two subjects had diminished performance with scrambling, suggesting retinotopic discrimination was used in the normal condition and made smooth pursuit eye movements congruent to the moving bar stimulus direction. These two subjects also made stimulus-related eye movements resembling optokinetic reflex (OKR) for moving grating stimuli, but the movement was incongruent with stimulus direction. The third subject was less adept at the task, appeared primarily reliant on head position cues (head movements were congruent to stimulus direction), and did not exhibit retinotopic discrimination and associated eye movements. Conclusions Our observation of smooth pursuit indicates residual functionality of cortical direction-selective circuits and implies a more naturalistic perception of motion than expected. A distorted OKR implies improper functionality of retinal direction-selective circuits, possibly due to retinal remodeling or the non-selective nature of the electrical stimulation. Translational Relevance Retinal implant users can make naturalistic eye movements in response to moving stimuli, highlighting the potential for eye tracker feedback to improve perceptual localization and image stabilization in camera-based visual prostheses.
Collapse
Affiliation(s)
- Samuel A Titchener
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - Jessica Kvansakul
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia.,Bionics Institute, East Melbourne, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - D A X Nayagam
- Bionics Institute, East Melbourne, Australia.,Department of Pathology, University of Melbourne, St. Vincent's Hospital, Melbourne, Australia
| | | | - Chris E Williams
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | - Nick Barnes
- Data61, CSIRO, Canberra, Australia.,Research School of Engineering, Australian National University, Canberra, Australia
| | - William G Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia
| | - Elizabeth K Baglin
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Matthew A Petoe
- Bionics Institute, East Melbourne, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
An update on retinal prostheses. Clin Neurophysiol 2019; 131:1383-1398. [PMID: 31866339 DOI: 10.1016/j.clinph.2019.11.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022]
Abstract
Retinal prostheses are designed to restore a basic sense of sight to people with profound vision loss. They require a relatively intact posterior visual pathway (optic nerve, lateral geniculate nucleus and visual cortex). Retinal implants are options for people with severe stages of retinal degenerative disease such as retinitis pigmentosa and age-related macular degeneration. There have now been three regulatory-approved retinal prostheses. Over five hundred patients have been implanted globally over the past 15 years. Devices generally provide an improved ability to localize high-contrast objects, navigate, and perform basic orientation tasks. Adverse events have included conjunctival erosion, retinal detachment, loss of light perception, and the need for revision surgery, but are rare. There are also specific device risks, including overstimulation (which could cause damage to the retina) or delamination of implanted components, but these are very unlikely. Current challenges include how to improve visual acuity, enlarge the field-of-view, and reduce a complex visual scene to its most salient components through image processing. This review encompasses the work of over 40 individual research groups who have built devices, developed stimulation strategies, or investigated the basic physiology underpinning retinal prostheses. Current technologies are summarized, along with future challenges that face the field.
Collapse
|
14
|
Liu W, Liu M, Liu Y, Li S, Weng C, Fu Y, He J, Gong Y, Liu W, Zhao C, Yin ZQ. Validation and Safety of Visual Restoration by Ectopic Expression of Human Melanopsin in Retinal Ganglion Cells. Hum Gene Ther 2019; 30:714-726. [PMID: 30582371 DOI: 10.1089/hum.2018.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To study whether ectopic human melanopsin (hMel) in retinal ganglion cells (RGCs) could restore the visual function in end-stage retinal degeneration, AAV2/8-CMV-hMel/FYP was injected into the intravitreal space of Royal College of Surgeons (RCS) rats. It was observed that ectopic hMel/yellow fluorescent protein (YFP) was dominantly expressed in the RGCs of the RCS rat retinae. At 30-45 days after administration of AAV2/8-CMV-hMel/FYP in RCS rats, the flash visual evoked potentials and behavioral results demonstrated that visual function was significantly improved compared to that in the control group, while no improvement in flash electroretinography was observed at this time point. To translate this potential therapeutic approach to the clinic, the safety of viral vectors in the retinae of normal macaques was then studied, and the expression profile of exogenous hMel with/without internal limiting membrane peeling was compared before viral vector administration. The data revealed that there was no significant difference in the number of RGCs containing exogenous hMel/YFP between the two groups. Whole-cell patch-clamp recordings demonstrated that the hMel/YFP-positive RGCs of the macaque retinae reacted to the intense light stimulation, generating inward currents and action potentials. This result confirms that the ectopic hMel expressed in RGCs is functional. Moreover, the introduction of AAV2/8-CMV-hMel/FYP does not cause detectable pathological effects. Thus, this study suggests that AAV2/8-CMV-hMel/FYP administration without internal limiting membrane peeling is safe and feasible for efficient transduction and provides therapeutic benefits to restore the visual function of patients suffering photoreceptor loss.
Collapse
Affiliation(s)
- Wenyi Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Mingming Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Yong Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - ShiYing Li
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Chuanhuang Weng
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Yan Fu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Juncai He
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Yu Gong
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Weiping Liu
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - CongJian Zhao
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| | - Zheng Qin Yin
- 1 Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, P.R. China; and Chongqing, P.R. China.,2 Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, P.R. China
| |
Collapse
|
15
|
McKone E, Robbins RA, He X, Barnes N. Caricaturing faces to improve identity recognition in low vision simulations: How effective is current-generation automatic assignment of landmark points? PLoS One 2018; 13:e0204361. [PMID: 30286112 PMCID: PMC6171855 DOI: 10.1371/journal.pone.0204361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Previous behavioural studies demonstrate that face caricaturing can provide an effective image enhancement method for improving poor face identity perception in low vision simulations (e.g., age-related macular degeneration, bionic eye). To translate caricaturing usefully to patients, assignment of the multiple face landmark points needed to produce the caricatures needs to be fully automatised. Recent development in computer science allows automatic face landmark detection of 68 points in real time and in multiple viewpoints. However, previous demonstrations of the behavioural effectiveness of caricaturing have used higher-precision caricatures with 147 landmark points per face, assigned by hand. Here, we test the effectiveness of the auto-assigned 68-point caricatures. We also compare this to the hand-assigned 147-point caricatures. METHOD We assessed human perception of how different in identity pairs of faces appear, when veridical (uncaricatured), caricatured with 68-points, and caricatured with 147-points. Across two experiments, we tested two types of low-vision images: a simulation of blur, as experienced in macular degeneration (testing two blur levels); and a simulation of the phosphenised images seen in prosthetic vision (at three resolutions). RESULTS The 68-point caricatures produced significant improvements in identity discrimination relative to veridical. They were approximately 50% as effective as the 147-point caricatures. CONCLUSION Realistic translation to patients (e.g., via real time caricaturing with the enhanced signal sent to smart glasses or visual prosthetic) is approaching feasibility. For maximum effectiveness software needs to be able to assign landmark points tracing out all details of feature and face shape, to produce high-precision caricatures.
Collapse
Affiliation(s)
- Elinor McKone
- Research School of Psychology, and ARC Centre of Excellence in Cognition and its Disorders, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rachel A. Robbins
- Research School of Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xuming He
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Nick Barnes
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
- Bionic Vision Australia, Carlton, Victoria, Australia
| |
Collapse
|
16
|
Bareket L, Barriga-Rivera A, Zapf MP, Lovell NH, Suaning GJ. Progress in artificial vision through suprachoroidal retinal implants. J Neural Eng 2018; 14:045002. [PMID: 28541930 DOI: 10.1088/1741-2552/aa6cbb] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal implants have proven their ability to restore visual sensation to people with degenerative retinopathy, characterized by photoreceptor cell death and the retina's inability to sense light. Retinal bionics operate by electrically stimulating the surviving neurons in the retina, thus triggering the transfer of visual sensory information to the brain. Suprachoroidal implants were first investigated in Australia in the 1950s. In this approach, the neuromodulation hardware is positioned between the sclera and the choroid, thus providing significant surgical and safety benefits for patients, with the potential to maintain residual vision combined with the artificial input from the device. Here we review the latest advances and state of the art devices for suprachoroidal prostheses, highlight future technologies and discuss challenges and perspectives towards improved rehabilitation of vision.
Collapse
Affiliation(s)
- Lilach Bareket
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
17
|
Light localization with low-contrast targets in a patient implanted with a suprachoroidal-transretinal stimulation retinal prosthesis. Graefes Arch Clin Exp Ophthalmol 2018; 256:1723-1729. [PMID: 29679170 DOI: 10.1007/s00417-018-3982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To evaluate the improvement in targeted reaching movements toward targets of various contrasts in a patient implanted with a suprachoroidal-transretinal stimulation (STS) retinal prosthesis. METHODS An STS retinal prosthesis was implanted in the right eye of a 42-year-old man with advanced Stargardt disease (visual acuity: right eye, light perception; left eye, hand motion). In localization tests during the 1-year follow-up period, the patient attempted to touch the center of a white square target (visual angle, 10°; contrast, 96, 85, or 74%) displayed at a random position on a monitor. The distance between the touched point and the center of the target (the absolute deviation) was averaged over 20 trials with the STS system on or off. RESULTS With the left eye occluded, the absolute deviation was not consistently lower with the system on than off for high-contrast (96%) targets, but was consistently lower with the system on for low-contrast (74%) targets. With both eyes open, the absolute deviation was consistently lower with the system on than off for 85%-contrast targets. With the system on and 96%-contrast targets, we detected a shorter response time while covering the right eye, which was being implanted with the STS, compared to covering the left eye (2.41 ± 2.52 vs 8.45 ± 3.78 s, p < 0.01). CONCLUSIONS Performance of a reaching movement improved in a patient with an STS retinal prosthesis implanted in an eye with residual natural vision. Patients with a retinal prosthesis may be able to improve their visual performance by using both artificial vision and their residual natural vision. CLINICAL TRIAL REGISTRATION Beginning date of the trial: Feb. 20, 2014 Date of registration: Jan. 4, 2014 Trial registration number: UMIN000012754 Registration site: UMIN Clinical Trials Registry (UMIN-CTR) http://www.umin.ac.jp/ctr/index.htm.
Collapse
|
18
|
Abdallah W, Li W, Weiland J, Humayun M, Ameri H. Implantation of multiple suprachoroidal electrode arrays in rabbits. J Curr Ophthalmol 2018; 30:68-73. [PMID: 29564412 PMCID: PMC5859463 DOI: 10.1016/j.joco.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose Epiretinal and subretinal prosthesis have been shown to be a valid way to provide some vision to patients with advanced outer retinal degeneration and profound vision loss. However, the field of vision for these patients is markedly limited by the area occupied by the electrode array. In this study, we aimed to evaluate the feasibility of implantation of multiple suprachoroidal electrode arrays in a single eye in order to increase the field of vision in patients implanted with retinal prosthesis. Methods The right eye of seventeen Dutch rabbits (age range, 5–6 months) was used for the study. Multiple inactive custom-made electrode arrays were inserted into the suprachoroidal space (SCS) and animals were followed up for up to 6 months using fundus photography, optical coherence tomography (OCT), and fluorescein angiography (FA). Results It was possible to surgically implant up to 8 electrode arrays in a single eye. None of the rabbits showed any major complications. The electrodes were well tolerated and remained in position in all rabbits. There was no evidence of retinal damage on follow-up exams and FA throughout the study. Conclusion Multiple suprachoroidal electrode array implantation is feasible and may provide a novel approach to increase the field of vision in subjects implanted with retinal prosthesis.
Collapse
Affiliation(s)
- Walid Abdallah
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - James Weiland
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Mark Humayun
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Titchener SA, Shivdasani MN, Fallon JB, Petoe MA. Gaze Compensation as a Technique for Improving Hand-Eye Coordination in Prosthetic Vision. Transl Vis Sci Technol 2018; 7:2. [PMID: 29321945 PMCID: PMC5759363 DOI: 10.1167/tvst.7.1.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose Shifting the region-of-interest within the input image to compensate for gaze shifts (“gaze compensation”) may improve hand–eye coordination in visual prostheses that incorporate an external camera. The present study investigated the effects of eye movement on hand-eye coordination under simulated prosthetic vision (SPV), and measured the coordination benefits of gaze compensation. Methods Seven healthy-sighted subjects performed a target localization-pointing task under SPV. Three conditions were tested, modeling: retinally stabilized phosphenes (uncompensated); gaze compensation; and no phosphene movement (center-fixed). The error in pointing was quantified for each condition. Results Gaze compensation yielded a significantly smaller pointing error than the uncompensated condition for six of seven subjects, and a similar or smaller pointing error than the center-fixed condition for all subjects (two-way ANOVA, P < 0.05). Pointing error eccentricity and gaze eccentricity were moderately correlated in the uncompensated condition (azimuth: R2 = 0.47; elevation: R2 = 0.51) but not in the gaze-compensated condition (azimuth: R2 = 0.01; elevation: R2 = 0.00). Increased variability in gaze at the time of pointing was correlated with greater reduction in pointing error in the center-fixed condition compared with the uncompensated condition (R2 = 0.64). Conclusions Eccentric eye position impedes hand–eye coordination in SPV. While limiting eye eccentricity in uncompensated viewing can reduce errors, gaze compensation is effective in improving coordination for subjects unable to maintain fixation. Translational Relevance The results highlight the present necessity for suppressing eye movement and support the use of gaze compensation to improve hand–eye coordination and localization performance in prosthetic vision.
Collapse
Affiliation(s)
- Samuel A Titchener
- The Bionics Institute of Australia, East Melbourne, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Australia
| | - Mohit N Shivdasani
- The Bionics Institute of Australia, East Melbourne, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Australia
| | - James B Fallon
- The Bionics Institute of Australia, East Melbourne, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Australia
| | - Matthew A Petoe
- The Bionics Institute of Australia, East Melbourne, Australia.,Department of Medical Bionics, University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Li H, Su X, Wang J, Kan H, Han T, Zeng Y, Chai X. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision. Artif Intell Med 2018; 84:64-78. [PMID: 29129481 DOI: 10.1016/j.artmed.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Su
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Han Kan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingting Han
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yajie Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Weiland JD, Humayun MS, Gonzalez Calle A. The Development of Visual Prosthetic Devices to Restore Vision to the Blind. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Barriga-Rivera A, Bareket L, Goding J, Aregueta-Robles UA, Suaning GJ. Visual Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision. Front Neurosci 2017; 11:620. [PMID: 29184478 PMCID: PMC5694472 DOI: 10.3389/fnins.2017.00620] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
The bypassing of degenerated photoreceptors using retinal neurostimulators is helping the blind to recover functional vision. Researchers are investigating new ways to improve visual percepts elicited by these means as the vision produced by these early devices remain rudimentary. However, several factors are hampering the progression of bionic technologies: the charge injection limits of metallic electrodes, the mechanical mismatch between excitable tissue and the stimulating elements, neural and electric crosstalk, the physical size of the implanted devices, and the inability to selectively activate different types of retinal neurons. Electrochemical and mechanical limitations are being addressed by the application of electromaterials such as conducting polymers, carbon nanotubes and nanocrystalline diamonds, among other biomaterials, to electrical neuromodulation. In addition, the use of synthetic hydrogels and cell-laden biomaterials is promising better interfaces, as it opens a door to establishing synaptic connections between the electrode material and the excitable cells. Finally, new electrostimulation approaches relying on the use of high-frequency stimulation and field overlapping techniques are being developed to better replicate the neural code of the retina. All these elements combined will bring bionic vision beyond its present state and into the realm of a viable, mainstream therapy for vision loss.
Collapse
Affiliation(s)
- Alejandro Barriga-Rivera
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
- Division of Neuroscience, University Pablo de Olavide, Sevilla, Spain
| | - Lilach Bareket
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| | - Josef Goding
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Gregg J. Suaning
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Irons JL, Gradden T, Zhang A, He X, Barnes N, Scott AF, McKone E. Face identity recognition in simulated prosthetic vision is poorer than previously reported and can be improved by caricaturing. Vision Res 2017; 137:61-79. [PMID: 28688907 DOI: 10.1016/j.visres.2017.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/15/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
The visual prosthesis (or "bionic eye") has become a reality but provides a low resolution view of the world. Simulating prosthetic vision in normal-vision observers, previous studies report good face recognition ability using tasks that allow recognition to be achieved on the basis of information that survives low resolution well, including basic category (sex, age) and extra-face information (hairstyle, glasses). Here, we test within-category individuation for face-only information (e.g., distinguishing between multiple Caucasian young men with hair covered). Under these conditions, recognition was poor (although above chance) even for a simulated 40×40 array with all phosphene elements assumed functional, a resolution above the upper end of current-generation prosthetic implants. This indicates that a significant challenge is to develop methods to improve face identity recognition. Inspired by "bionic ear" improvements achieved by altering signal input to match high-level perceptual (speech) requirements, we test a high-level perceptual enhancement of face images, namely face caricaturing (exaggerating identity information away from an average face). Results show caricaturing improved identity recognition in memory and/or perception (degree by which two faces look dissimilar) down to a resolution of 32×32 with 30% phosphene dropout. Findings imply caricaturing may offer benefits for patients at resolutions realistic for some current-generation or in-development implants.
Collapse
Affiliation(s)
- Jessica L Irons
- Research School of Psychology, Australian National University, Australia; ARC Centre for Cognition and Its Disorders, Australian National University, Australia.
| | - Tamara Gradden
- Research School of Psychology, Australian National University, Australia
| | - Angel Zhang
- Research School of Psychology, Australian National University, Australia
| | - Xuming He
- National Information and Communication Technology Australia (NICTA), Australia; College of Engineering and Computer Science, Australian National University, Australia; Data61, CSIRO, Australia
| | - Nick Barnes
- National Information and Communication Technology Australia (NICTA), Australia; College of Engineering and Computer Science, Australian National University, Australia; Bionic Vision Australia, Australia; Data61, CSIRO, Australia
| | - Adele F Scott
- National Information and Communication Technology Australia (NICTA), Australia; Bionic Vision Australia, Australia; Data61, CSIRO, Australia
| | - Elinor McKone
- Research School of Psychology, Australian National University, Australia; ARC Centre for Cognition and Its Disorders, Australian National University, Australia.
| |
Collapse
|
24
|
Neuronal expression of c-Fos after epicortical and intracortical electric stimulation of the primary visual cortex. J Chem Neuroanat 2016; 77:121-128. [PMID: 27364963 DOI: 10.1016/j.jchemneu.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/25/2016] [Indexed: 11/20/2022]
Abstract
Electrical stimulation of the primary visual cortex (V1) is an experimental approach for visual prostheses. We here compared the response to intracortical and epicortical stimulation of the primary visual cortex by using c-Fos immunoreactivity as a marker for neuronal activation. The primary visual cortex of male Sprague Dawley rats was unilaterally stimulated for four hours using bipolar electrodes placed either intracortically in layer IV (n=26) or epicortically (n=20). Four different current intensities with a constant pulse width of 200μs and a constant frequency of 10Hz were used, for intracortical stimulation with an intensity of 0μA (sham-stimulation), 10μA, 20μA and 40μA, and for epicortical stimulation 0μA, 400μA, 600μA and 800μA. Subsequently all animals underwent c-Fos immunostaining and c-Fos expression was assessed in layer I-VI of the primary visual cortex within 200μm and 400μm distance to the stimulation site. C-Fos expression was higher after intracortical stimulation compared to epicortical stimulation, even though ten times lower current intensities were applied. Furthermore intracortical stimulation resulted in more focal neuronal activation than epicortical stimulation. C-Fos expression was highest after intracortical stimulation with 20μA compared to all other intensities. Epicortical stimulation showed a linear increase of c-Fos expression with the highest expression at 800μA. Sham stimulation showed similar expression of c-Fos in both hemispheres. The contralateral hemisphere was not affected by intracortical or epicortical stimulation of either intensities. In summary, intracortical stimulation resulted in more focal neuronal activation with less current than epicortical stimulation. This model may be used as a simple but reliable model to evaluate electrodes for microstimulation of the primary visual cortex before testing in more complex settings.
Collapse
|