1
|
Xie H, Wang Y, Ye Z, Fang S, Xu Z, Wu T, Chan LLH. Monitoring Cortical Response and Electrode-Retina Impedance Under Epiretinal Stimulation in Rats. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1178-1187. [PMID: 34152987 DOI: 10.1109/tnsre.2021.3090904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal prosthesis can restore partial vision in patients with retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. Epiretinal prosthesis is one of three therapeutic approaches, which received regulatory approval several years ago. The thresholds of an epiretinal stimulation is partly determined by the size of the physical gap between the electrode and the retina after implantation. Precise positioning of epiretinal stimulating electrode array is still a challenging task. In this study, we demonstrate an approach to positioning epiretinal prostheses for an optimal response at the cortical output by monitoring both the impedance at the electrode-retina interface and the evoked-potential at the cortical level. We implanted a single-channel electrode on the epiretinal surface in adult rats, acutely, guided by both the impedance at the electrode-retina interface and by electrically evoked potentials (EEPs) in the visual cortex during retinal stimulation. We observe that impedance monotonously increases with decreasing electrode-retina distance, but that the strongest cortical responses were achieved at intermediate impedance levels. When the electrode penetrates the retina, the impedance keeps increasing. The effect of stimulation on the retina changes from epiretinal paradigm to intra-retinal paradigm and a decrease in cortical activation is observed. It is found that high impedance is not always favorable to elicit best cortical responses. Histopathological results showed that the electrode was placed at the intra-retinal space at high impedance value. These results show that monitoring impedance at the electrode-retina interface is necessary but not sufficient in obtaining strong evoked-potentials at the cortical level. Monitoring the cortical EEPs together with the impedance can improve the safety of implantation as well as efficacy of stimulation in the next generation of retinal implants.
Collapse
|
2
|
Wang J, Xie H, Chung T, Chan LLH, Pang SW. Neural Probes with Integrated Temperature Sensors for Monitoring Retina and Brain Implantation and Stimulation. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1663-1673. [PMID: 28362612 DOI: 10.1109/tnsre.2016.2634584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gold (Au) resistive temperature sensors were integrated on flexible polyimide-based neural probes to monitor temperature changes during neural probe implantation and stimulation. Temperature changes were measured as neural probes were implanted to infer the positions of the neural probes, and as the retina or the deep brain region was stimulated electrically. The temperature sensor consisted of a serpentine Au resistor and surrounded by four Au electrodes with 200 and [Formula: see text] diameter (dia.). The Au temperature sensors had temperature coefficient of 0.32%, and they were biocompatible and small in size. In vivo measurements of temperature changes during implantation and stimulation were carried out in the retina and deep brain region in rats. The desired implantation position was reached when temperature measured by the sensor increased to the calibrated level and became stable. There was no temperature increase when low level stimulation current of 8 and [Formula: see text] each for the two 200- and 400- [Formula: see text]-dia. electrodes, respectively, were applied. When higher level stimulation current of 100 and [Formula: see text] each were applied to the two 200- and 400- [Formula: see text]-dia. electrodes, respectively, maximum temperature increases of 1.2 °C in retina and 1 °C in deep brain region were found.
Collapse
|
3
|
3D Finite Element Modeling of Epiretinal Stimulation: Impact of Prosthetic Electrode Size and Distance from the Retina. Int J Artif Organs 2015; 38:277-87. [DOI: 10.5301/ijao.5000412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Purpose A novel 3-dimensional (3D) finite element model was established to systematically investigate the impact of the diameter (Φ) of disc electrodes and the electrode-to-retina distance on the effectiveness of stimulation. Methods The 3D finite element model was established based on a disc platinum stimulating electrode and a 6-layered retinal structure. The ground electrode was placed in the extraocular space in direct attachment with sclera and treated as a distant return electrode. An established criterion of electric-field strength of 1000 Vm−1 was adopted as the activation threshold for RGCs. Results The threshold current (TC) increased linearly with increasing Φ and electrode-to-retina distance and remained almost unchanged with further increases in diameter. However, the threshold charge density (TCD) increased dramatically with decreasing electrode diameter. TCD exceeded the electrode safety limit for an electrode diameter of 50 μm at an electrode-to-retina distance of 50 to 200 μm. The electric field distributions illustrated that smaller electrode diameters and shorter electrode-to-retina distances were preferred due to more localized excitation of RGC area under stimulation of different threshold currents in terms of varied electrode size and electrode-to-retina distances. Under the condition of same-amplitude current stimulation, a large electrode exhibited an improved potential spatial selectivity at large electrode-to-retina distances. Conclusions Modeling results were consistent with those reported in animal electrophysiological experiments and clinical trials, validating the 3D finite element model of epiretinal stimulation. The computational model proved to be useful in optimizing the design of an epiretinal stimulating electrode for prosthesis.
Collapse
|
4
|
Majdi JA, Minnikanti S, Peixoto N, Agrawal A, Cohen ED. Access resistance of stimulation electrodes as a function of electrode proximity to the retina. J Neural Eng 2014; 12:016006. [DOI: 10.1088/1741-2560/12/1/016006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Sim SL, Szalewski RJ, Johnson LJ, Akah LE, Shoemaker LE, Thoreson WB, Margalit E. Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation. Vision Res 2014; 101:41-50. [PMID: 24863584 PMCID: PMC4437194 DOI: 10.1016/j.visres.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
We compared response patterns and electrical receptive fields (ERF) of retinal ganglion cells (RGCs) during epiretinal and subretinal electrical stimulation of isolated mouse retina. Retinas were stimulated with an array of 3200 independently controllable electrodes. Four response patterns were observed: a burst of activity immediately after stimulation (Type I cells, Vision Research (2008), 48, 1562-1568), delayed bursts beginning >25ms after stimulation (Type II), a combination of both (Type III), and inhibition of ongoing spike activity. Type I responses were produced more often by epiretinal than subretinal stimulation whereas delayed and inhibitory responses were evoked more frequently by subretinal stimulation. Response latencies were significantly shorter with epiretinal than subretinal stimulation. These data suggest that subretinal stimulation is more effective at activating intraretinal circuits than epiretinal stimulation. There was no significant difference in charge threshold between subretinal and epiretinal configurations. ERFs were defined by the stimulating array surface area that successfully stimulated spikes in an RGC. ERFs were complex in shape, similar to receptive fields mapped with light. ERF areas were significantly smaller with subretinal than epiretinal stimulation. This may reflect the greater distance between stimulating electrodes and RGCs in the subretinal configuration. ERFs for immediate and delayed responses mapped within the same Type III cells differed in shape and size, consistent with different sites and mechanisms for generating these two response types.
Collapse
Affiliation(s)
- S L Sim
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - R J Szalewski
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - L J Johnson
- Naval Research Laboratory, Washington, DC, USA
| | - L E Akah
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - L E Shoemaker
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - W B Thoreson
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska, NE, USA
| | - E Margalit
- VA Nebraska-Western Iowa Health Care System, NE, USA; Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Johnson LJ, Cohen E, Ilg D, Klein R, Skeath P, Scribner DA. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. J Neurosci Methods 2012; 205:223-32. [PMID: 22266817 DOI: 10.1016/j.jneumeth.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Microelectrode recording arrays of 60-100 electrodes are commonly used to record neuronal biopotentials, and these have aided our understanding of brain function, development and pathology. However, higher density microelectrode recording arrays of larger area are needed to study neuronal function over broader brain regions such as in cerebral cortex or hippocampal slices. Here, we present a novel design of a high electrode count picocurrent imaging array (PIA), based on an 81,920 pixel Indigo ISC9809 readout integrated circuit camera chip. While originally developed for interfacing to infrared photodetector arrays, we have adapted the chip for neuron recording by bonding it to microwire glass resulting in an array with an inter-electrode pixel spacing of 30 μm. In a high density electrode array, the ability to selectively record neural regions at high speed and with good signal to noise ratio are both functionally important. A critical feature of our PIA is that each pixel contains a dedicated low noise transimpedance amplifier (∼0.32 pA rms) which allows recording high signal to noise ratio biocurrents comparable to single electrode voltage amplifier recordings. Using selective sampling of 256 pixel subarray regions, we recorded the extracellular biocurrents of rabbit retinal ganglion cell spikes at sampling rates up to 7.2 kHz. Full array local electroretinogram currents could also be recorded at frame rates up to 100 Hz. A PIA with a full complement of 4 readout circuits would span 1cm and could acquire simultaneous data from selected regions of 1024 electrodes at sampling rates up to 9.3 kHz.
Collapse
Affiliation(s)
- Lee J Johnson
- Code 5611, Optical Sciences Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Kasi H, Hasenkamp W, Cosendai G, Bertsch A, Renaud P. Simulation of epiretinal prostheses - evaluation of geometrical factors affecting stimulation thresholds. J Neuroeng Rehabil 2011; 8:44. [PMID: 21854602 PMCID: PMC3177891 DOI: 10.1186/1743-0003-8-44] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 08/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids. METHODS In this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina. RESULTS Threshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation. CONCLUSIONS The validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.
Collapse
Affiliation(s)
- Harsha Kasi
- Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | | | | | | | | |
Collapse
|
8
|
Kasi H, Bertsch A, Guyomard JL, Kolomiets B, Picaud S, Pelizzone M, Renaud P. Simulations to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants. Med Eng Phys 2011; 33:755-63. [PMID: 21354850 DOI: 10.1016/j.medengphy.2011.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
We present a finite element based simulation and analysis method to describe the spatial extent of stimulation and the effects of electrode-tissue interactions in subretinal prostheses. In particular, we estimate the threshold stimulation current needed to depolarise and evoke action potentials in the ganglion cells to be stimulated at a particular distance from the electrode. This is achieved through the application of a threshold electric field to a spherical neuronal soma model of a retinal ganglion cell under consideration. Threshold stimulation currents and the lateral extent of the stimulation zone were computed for disc microelectrodes in subretinal stimulation mode. Recent evidence indicates a decrease in threshold charge with time following subretinal implantation. Consequently, to explain the variation in threshold stimulation currents, we propose a hypothesis based on an electrode-tissue gap. Threshold stimulation currents and impedances for different electrode-tissue gaps were computed. We validate the hypothesis with our simulation results that the changes in impedance observed with time in vivo can be mainly attributed to the varying distance of the ganglion cells from electrodes due to changes in electrode-tissue gap. Our simulation framework proposes a convenient and practical method applicable for studying different electrode geometries used for retinal stimulation.
Collapse
Affiliation(s)
- Harsha Kasi
- Microsystems Laboratory (LMIS4), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Jensen RJ, Ziv OR, Rizzo JF, Scribner D, Johnson L. Spatiotemporal aspects of pulsed electrical stimuli on the responses of rabbit retinal ganglion cells. Exp Eye Res 2009; 89:972-9. [PMID: 19766116 DOI: 10.1016/j.exer.2009.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/28/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
Implanted intraocular microelectrode arrays are being used to provide sight to individuals who are blind due to photoreceptor degeneration. It is envisioned that this retinal prosthesis will create the illusion of motion by stimulating focal areas of the retina in a sequential fashion through neighboring electrodes, much like the rapid succession of still images in movies and computer animation gives rise to apparent motion. Using a high-density microelectrode array, we examined the extracellularly recorded responses of rabbit retinal ganglion cells to a bar-shaped electrode array that was stepped at 50 microm increments at different rates across the retina and compared these responses to the responses generated to a similarly shaped light stimulus that was stepped across the retina. When the retina was stimulated at 1 step/s, retinal ganglion cells gave robust bursts of action potentials to both the electrode array and the light stimulus. The responses to the 'moving' electrode array decreased progressively with increasing stepping frequency. At 16 steps/s (highest frequency tested), the number of spikes per sweep and the number of bursts per sweep were reduced 75% and 67% respectively. In contrast, when the retina was stimulated at 16 steps/s with the 'moving' light stimulus, the number of spikes per sweep and the number of bursts per sweep were reduced only 43% and 25% respectively. These findings suggest that simple translation of object motion to sequential stimulation through neighboring electrodes may not be the best way to convey the perception of object motion in a patient with a retinal prosthesis.
Collapse
Affiliation(s)
- Ralph J Jensen
- The Center for Innovative Visual Rehabilitation, VA Boston Healthcare System, Mail Stop 151E, 150 South Huntington Avenue, Boston, MA 02130, USA.
| | | | | | | | | |
Collapse
|
10
|
Ameri H, Ratanapakorn T, Ufer S, Eckhardt H, Humayun MS, Weiland JD. Toward a wide-field retinal prosthesis. J Neural Eng 2009; 6:035002. [PMID: 19458405 DOI: 10.1088/1741-2560/6/3/035002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this paper is to present a wide field electrode array that may increase the field of vision in patients implanted with a retinal prosthesis. Mobility is often impaired in patients with low vision, particularly in those with peripheral visual loss. Studies on low vision patients as well as simulation studies on normally sighted individuals have indicated a strong correlation between the visual field and mobility. In addition, it has been shown that an increased visual field is associated with a significant improvement in visual acuity and object discrimination. Current electrode arrays implanted in animals or human vary in size; however, the retinal area covered by the electrodes has a maximum projected visual field of about 10 degrees. We have designed wide field electrode arrays that could potentially provide a visual field of 34 degrees, which may significantly improve the mobility. Tests performed on a mechanical eye model showed that it was possible to fix 10 mm wide flexible polyimide dummy electrode arrays onto the retina using a single retinal tack. They also showed that the arrays could conform to the inner curvature of the eye. Surgeries on an enucleated porcine eye model demonstrated feasibility of implantation of 10 mm wide arrays through a 5 mm eye wall incision.
Collapse
Affiliation(s)
- Hossein Ameri
- Doheny Retina Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
11
|
A review of in vivo animal studies in retinal prosthesis research. Graefes Arch Clin Exp Ophthalmol 2008; 246:1505-17. [PMID: 18709385 DOI: 10.1007/s00417-008-0891-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 06/12/2008] [Accepted: 06/16/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The development of a functional retinal prosthesis for acquired blindness is a great challenge. Rapid progress in the field over the last 15 years would not have been possible without extensive animal experimentation pertaining to device design and fabrication, biocompatibility, stimulation parameters and functional responses. This paper presents an overview of in vivo animal research related to retinal prosthetics, and aims to summarize the relevant studies. METHODS A Pubmed search of the English language literature was performed. The key search terms were: retinal implant, retinal prosthesis, artificial vision, rat, rabbit, cat, dog, sheep, pig, minipig. In addition a manual search was performed based on references quoted in the articles retrieved through Pubmed. RESULTS We identified 50 articles relevant to in vivo animal experimentation directly related to the development of a retinal implant. The highest number of publications related to the cat (n = 18). CONCLUSION The contribution of animal models to the development of retinal prosthetic devices has been enormous, and has led to human feasibility studies. Grey areas remain regarding long-term tissue-implant interactions, biomaterials, prosthesis design and neural adaptation. Animals will continue to play a key role in this rapidly evolving field.
Collapse
|