1
|
Tripathy KC, Siddharth A, Bhandari A. Image-based insilico investigation of hemodynamics and biomechanics in healthy and diabetic human retinas. Microvasc Res 2023; 150:104594. [PMID: 37579814 DOI: 10.1016/j.mvr.2023.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Retinal hemodynamics and biomechanics play a significant role in understanding the pathophysiology of several ocular diseases. However, these parameters are significantly affected due to changed blood vessel morphology ascribed to pathological conditions, particularly diabetes. In this study, an image-based computational fluid dynamics (CFD) model is applied to examine the effects of changed vascular morphology due to diabetes on blood flow velocity, vorticity, wall shear stress (WSS), and oxygen distribution and compare it with healthy. The 3D patient-specific vascular architecture of diabetic and healthy retina is extracted from Optical Coherence Tomography Angiography (OCTA) images and fundus to extract the capillary level information. Further, Fluid-structure interaction (FSI) simulations have been performed to compare the induced tissue stresses in diabetic and healthy conditions. Results illustrate that most arterioles possess higher velocity, vorticity, WSS, and lesser oxygen concentration than arteries for healthy and diabetic cases. However, an opposite trend is observed for venules and veins. Comparisons show that, on average, the blood flow velocity in the healthy case decreases by 42 % in arteries and 21 % in veins, respectively, compared to diabetic. In addition, the WSS and von Mises stress (VMS) in healthy case decrease by 49 % and 72 % in arteries and by 6 % and 28 % in veins, respectively, when compared with diabetic, making diabetic blood vessels more susceptible to wall rupture and tissue damage. The in-silico results may help predict the possible abnormalities region early, helping the ophthalmologists use these estimates as prognostic tools and tailor patient-specific treatment plans.
Collapse
Affiliation(s)
- Kartika Chandra Tripathy
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Ashish Siddharth
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
| |
Collapse
|
2
|
Finite Element Analysis of the Epiretinal Membrane Contraction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The epiretinal membrane is a thin sheet of fibrous tissue that can form over the macular area of the retina, and may result in the loss of visual acuity or metamorphopsia, due to superficial retinal folds. A vitrectomy surgery, the current treatment procedure for this pathology, is only performed after symptoms are present. However, sometimes the patients do not present any vision improvements after the surgery. The use of computational methods for a patient-specific biomechanical analysis can contribute to better understanding the mechanisms behind the success or failure of a vitrectomy. Using medical data from two patients who underwent a vitrectomy, one with substantial improvements and another with no improvements, an analysis of the retinal displacement due to the contraction of the epiretinal membrane was performed. Our results suggest a causal effect between the magnitude of the retinal displacements caused by the epiretinal membrane contraction and the outcome of the vitrectomy procedure.
Collapse
|
3
|
Schiavi A, Cuccaro R, Troia A. Functional mechanical attributes of natural and synthetic gel-based scaffolds in tissue engineering: strain-stiffening effects on apparent elastic modulus and compressive toughness. J Mech Behav Biomed Mater 2022; 126:105066. [PMID: 35008012 DOI: 10.1016/j.jmbbm.2021.105066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022]
Abstract
The accurate identification and determination of elastic modulus and toughness, as well as other functional mechanical attributes of artificial tissues, are of paramount importance in several fields of tissue science, tissue engineering and technology, since biomechanical and biophysical behavior is strongly linked to biological features of the medical implants and tissue-engineering scaffolds. When soft or ultra-soft materials are investigated, a relevant dispersion of elastic modulus values can be achieved, due to the strain-stiffening effects, inducing a typical non-linear behavior of these materials, as a function of strain-range. In this short communication, the Apparent elastic modulus strain-range dependence is estimated from a segmentation of the strain stiffening curve, and the related compressive toughness is investigated and discussed, based on experimental evidence, for 6 different kinds of gels, used for artificial tissue fabrication; experimental results are compared to mechanical properties of native human tissues.
Collapse
Affiliation(s)
- Alessandro Schiavi
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada Delle Cacce 91, 10135, Torino, Italy.
| | - Rugiada Cuccaro
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada Delle Cacce 91, 10135, Torino, Italy.
| | - Adriano Troia
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada Delle Cacce 91, 10135, Torino, Italy.
| |
Collapse
|
4
|
A computational framework to investigate retinal haemodynamics and tissue stress. Biomech Model Mechanobiol 2019; 18:1745-1757. [PMID: 31140054 DOI: 10.1007/s10237-019-01172-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
The process of vision begins in the retina, yet the role of biomechanical forces in the retina is relatively unknown and only recently being explored. This contribution describes a computational framework involving 3D fluid-structure interaction simulations derived from fundus images that work towards creating unique data on retinal biomechanics. We developed methods to convert 2D fundus photographs into 3D geometries that follow the curvature of the retina. Retina arterioles are embedded into a six-layer representation of the retinal tissue with varying material properties throughout the retinal tissue. Using three different human retinas (healthy, glaucoma, diabetic retinopathy) and by varying our simulation approaches, we report the effects of transient versus steady flow, viscosity assumptions (Newtonian, non-Newtonian and Fåhræus-Lindqvist effect) and rigid versus compliant retinal tissue, on resulting wall shear stress (WSS) and von Mises stress. In the retinal arterioles, the choice of viscosity model is important and WSS obtained from models with the Fåhræus-Lindqvist effect is markedly different from Newtonian and non-Newtonian models. We found little difference in WSS between steady-state and pulsatile simulations (< 5%) and show that WSS varies by about 7% between rigid and deformable models. Comparing the three geometries, we found notably different WSS in the healthy (3.3 ± 1.3 Pa), glaucoma (5.7 ± 1.6 Pa) and diabetic retinopathy cases (4.3 ± 1.1 Pa). Conversely, von Mises stress was similar in each case. We have reported a novel biomechanical framework to explore the stresses in the retina. Despite current limitations and lack of complete subject-specific physiological inputs, we believe our framework is the first of its kind and with further improvements could be useful to better understand the biomechanics of the retina.
Collapse
|
5
|
A surgical simulator for peeling the inner limiting membrane during wet conditions. PLoS One 2018; 13:e0196131. [PMID: 29758028 PMCID: PMC5951573 DOI: 10.1371/journal.pone.0196131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/08/2018] [Indexed: 11/19/2022] Open
Abstract
The present study was performed to establish a novel ocular surgery simulator for training in peeling of the inner limited membrane (ILM). This simulator included a next-generation artificial ILM with mechanical properties similar to the natural ILM that could be peeled underwater in the same manner as in actual surgery. An artificial eye consisting of a fundus and eyeball parts was fabricated. The artificial eye was installed in the eye surgery simulator. The fundus part was mounted in the eyeball, which consisted of an artificial sclera, retina, and ILM. To measure the thickness of the fabricated ILM on the artificial retina, we calculated the distance of the step height as the thickness of the artificial ILM. Two experienced ophthalmologists then assessed the fabricated ILM by sensory evaluation. The minimum thickness of the artificial ILM was 1.9 ± 0.3 μm (n = 3). We were able to perform the peeling task with the ILM in water. Based on the sensory evaluation, an ILM with a minimum thickness and 1000 degrees of polymerization was suitable for training. We installed the eye model on an ocular surgery simulator, which allowed for the performance of a sequence of operations similar to ILM peeling. In conclusion, we developed a novel ocular surgery simulator for ILM peeling. The artificial ILM was peeled underwater in the same manner as in an actual operation.
Collapse
|
6
|
Zhang ZH, Pan MX, Cai JT, Weiland JD, Chen K. Viscoelastic properties of the posterior eye of normal subjects, patients with age-related macular degeneration, and pigs. J Biomed Mater Res A 2018; 106:2151-2157. [DOI: 10.1002/jbm.a.36417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhen Huan Zhang
- School of Biological Science and Medical Engineering; Beihang University - Yifu Science Hall, 37 Xueyuan Road; Haidian Beijing 100191 China
- Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 China
| | - Meng Xin Pan
- School of Biological Science and Medical Engineering; Beihang University - Yifu Science Hall, 37 Xueyuan Road; Haidian Beijing 100191 China
- Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 China
| | - Jia Tong Cai
- School of Biological Science and Medical Engineering; Beihang University - Yifu Science Hall, 37 Xueyuan Road; Haidian Beijing 100191 China
- Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 China
| | - James D. Weiland
- Department of Ophthalmology; University of Southern California - 1450 San Pablo Street; Los Angeles California 90033
- Department of Biomedical Engineering; University of Southern California - Denney Research Center, 1042 Downey Way; Los Angeles California 90089
| | - Kinon Chen
- School of Biological Science and Medical Engineering; Beihang University - Yifu Science Hall, 37 Xueyuan Road; Haidian Beijing 100191 China
- Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 China
- Department of Ophthalmology; University of Southern California - 1450 San Pablo Street; Los Angeles California 90033
- Department of Biomedical Engineering; University of Southern California - Denney Research Center, 1042 Downey Way; Los Angeles California 90089
| |
Collapse
|
7
|
Mann BK, Stirland DL, Lee HK, Wirostko BM. Ocular translational science: A review of development steps and paths. Adv Drug Deliv Rev 2018; 126:195-203. [PMID: 29355668 DOI: 10.1016/j.addr.2018.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Developing successful drug delivery methods is challenging for any tissue, and the eye is no exception. Translating initial concepts into advanced technologies treating diseases in preclinical models and finally into functional and marketable products for humans can be particularly daunting. While referring to specific ophthalmic companies and products, this review considers key exchanges that lead to successful translation. By building on basic science discoveries in the academic setting, applied science can perform proof-of-concept work with simple, benchtop experiments. Eventually, simple models need to be translated to more robust ones where cells, tissues, and entire organisms are incorporated. Successful translation also includes performing due diligence of the intellectual property, understanding the market needs, undertaking clinical development, meeting regulatory requirements, and eventually scale up manufacturing. Different stages of the translation can occur in different environments, including moving from academia to industry, from one company to another, or between veterinary and human applications. The translation process may also rely on contract organizations to move through the complex landscape. While the path to a commercial, marketable product may not look the same each time, it is important to design a development plan with clear goals and milestones to keep on track.
Collapse
Affiliation(s)
- Brenda K Mann
- EyeGate Pharmaceuticals Inc., Waltham, MA, United States
| | | | - Hee-Kyoung Lee
- EyeGate Pharmaceuticals Inc., Waltham, MA, United States
| | - Barbara M Wirostko
- EyeGate Pharmaceuticals Inc., Waltham, MA, United States; Moran Eye Center, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
8
|
Schiavi A, Cuccaro R, Troia A. Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications. J Mech Behav Biomed Mater 2016; 53:119-130. [DOI: 10.1016/j.jmbbm.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
9
|
Rohrbach D, Lloyd HO, Silverman RH, Mamou J. Fine-resolution maps of acoustic properties at 250 MHz of unstained fixed murine retinal layers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:EL381-EL387. [PMID: 25994737 PMCID: PMC4425732 DOI: 10.1121/1.4916790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 05/29/2023]
Abstract
Ex vivo assessment of microscale tissue biomechanical properties of the mammalian retina could offer insights into diseases such as keratoconus, and macular degeneration. A 250-MHz scanning acoustic microscope (7-μm resolution) has been constructed to derive two-dimensional quantitative maps of attenuation (α), speed of sound (c), acoustic impedance (Z), bulk modulus (B), and mass density ( ρ). The two-dimensional maps were compared to coregistered hematoxylin-and-eosin stained sections. This study is the first to quantitatively assess α, c, Z, B, and ρ of individual retinal layers of mammalian animals at high ultrasound frequencies. Significant differences in these parameters between the layers were demonstrated.
Collapse
Affiliation(s)
- Daniel Rohrbach
- Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York 10038, USA
| | - Harriet O Lloyd
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, USA
| | - Ronald H Silverman
- Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York 10038, USA ,
| | - Jonathan Mamou
- Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York 10038, USA ,
| |
Collapse
|
10
|
Weitz AC, Behrend MR, Ahuja AK, Christopher P, Wei J, Wuyyuru V, Patel U, Greenberg RJ, Humayun MS, Chow RH, Weiland JD. Interphase gap as a means to reduce electrical stimulation thresholds for epiretinal prostheses. J Neural Eng 2014; 11:016007. [PMID: 24654269 DOI: 10.1088/1741-2560/11/1/016007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Epiretinal prostheses are designed to restore functional vision to the blind by electrically stimulating surviving retinal neurons. These devices have classically employed symmetric biphasic current pulses in order to maintain a balance of charge. Prior electrophysiological and psychophysical studies in peripheral nerve show that adding an interphase gap (IPG) between the two phases makes stimulation more efficient than pulses with no gap. This led us to investigate the effect of IPG duration on retinal stimulation thresholds. APPROACH We measured retinal ganglion cell (RGC) electrical thresholds in salamander retina and phosphene perceptual thresholds in epiretinal prosthesis patients during stimulation with different IPG lengths. We also built Hodgkin-Huxley-type models of RGCs to further study how IPG affects thresholds. MAIN RESULTS In general, there was a negative exponential correlation between threshold and IPG duration. Durations greater than or equal to ~0.5 ms reduced salamander RGC thresholds by 20-25%. Psychophysical testing in five retinal prosthesis patients indicated that stimulating with IPGs can decrease perceptual thresholds by 10-15%. Results from computational models of RGCs corroborated the observed behavior. SIGNIFICANCE Incorporating interphase gaps can reduce the power consumption of epiretinal prostheses and increase the available dynamic range of phosphene size and brightness.
Collapse
|
11
|
Mechanical properties of murine and porcine ocular tissues in compression. Exp Eye Res 2014; 121:194-9. [PMID: 24613781 DOI: 10.1016/j.exer.2014.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/24/2022]
Abstract
Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized. In this study, the compressive moduli of eye tissues, especially the retina, were probed using a dynamic mechanical analysis instrument in static mode. The retinal compressive modulus was lower than that of the sclera or cornea, but higher than that of the RPE and choroid. Compressive modulus remained relatively stable with age. Conversely, apparent retinal softening occurred at an early age in mice with inherited retinal degeneration. Compressive modulus is an important consideration for the design of retinal implants. Polymer scaffolds with moduli that are substantially different than that of the native tissue in which they will ultimately reside will be less likely to aid in the differentiation and development of the appropriate cell types in vitro and will have reduced biocompatibility in vivo.
Collapse
|
12
|
Li M, Yan Y, Wang Q, Zhao H, Chai X, Sui X, Ren Q, Li L. A simulation of current focusing and steering with penetrating optic nerve electrodes. J Neural Eng 2013; 10:066007. [PMID: 24140618 DOI: 10.1088/1741-2560/10/6/066007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Current focusing and steering are both widely used to shape the electric field and increase the number of distinct perceptual channels in neural stimulation, yet neither technique has been used for an optic nerve (ON)-based visual prosthesis. In order to evaluate the effects of current focusing and steering in penetrative stimulation, we built an integrated computational model to simulate and investigate the influence of stimulating parameters on ON fibre recruitment. APPROACH Finite element models with extremely fine meshes were first established to compute the 3D electric potential distribution under different stimulating parameters. Then the external electric potential was fed to randomized multi-compartment cable models to predict the distribution of fibres generating an action potential. Finally a statistical process was conducted to quantify the recruitment region. MAIN RESULTS The simulation results show that a two-electrode mode is superior to a three-electrode mode in current steering. The three-electrode mode performs poorly in current focusing, albeit the localized recruitment from both configurations implies that current focusing might be unnecessary in penetrative ON stimulation. SIGNIFICANCE This study provides useful information for the optimized design of penetrating ON electrodes and stimulating strategies. The Monte Carlo style computation paradigm is designed to simulate neural responses of an ensemble of ON fibres, which can be immediately transferred to other similar problems.
Collapse
|
13
|
Chen K, Weiland JD. Relationship between vitreous temperature and posterior vitreous detachment. J Mech Behav Biomed Mater 2013; 26:54-8. [DOI: 10.1016/j.jmbbm.2013.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
14
|
Chen K, Rowley AP, Weiland JD, Humayun MS. Elastic properties of human posterior eye. J Biomed Mater Res A 2013; 102:2001-7. [DOI: 10.1002/jbm.a.34858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/04/2013] [Accepted: 06/21/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Kinon Chen
- Department of Biomedical Engineering; University of Southern California; Denney Research Center 140, 1042 Downey Way Los Angeles California 90089
- Department of Ophthalmology; University of Southern California; Doheny Eye Institute, 1450 San Pablo Street Los Angeles California 90033
| | - Adrian P. Rowley
- Department of Ophthalmology; University of Southern California; Doheny Eye Institute, 1450 San Pablo Street Los Angeles California 90033
- Department of Cell and Nuerobiology; University of Southern California; Los Angeles, California Los Angeles California 90089
| | - James D. Weiland
- Department of Biomedical Engineering; University of Southern California; Denney Research Center 140, 1042 Downey Way Los Angeles California 90089
- Department of Ophthalmology; University of Southern California; Doheny Eye Institute, 1450 San Pablo Street Los Angeles California 90033
| | - Mark S. Humayun
- Department of Biomedical Engineering; University of Southern California; Denney Research Center 140, 1042 Downey Way Los Angeles California 90089
- Department of Ophthalmology; University of Southern California; Doheny Eye Institute, 1450 San Pablo Street Los Angeles California 90033
- Department of Cell and Nuerobiology; University of Southern California; Los Angeles, California Los Angeles California 90089
| |
Collapse
|
15
|
Nayar VT, Weiland JD, Hodge AM. Macrocompression and Nanoindentation of Soft Viscoelastic Biological Materials. Tissue Eng Part C Methods 2012; 18:968-75. [DOI: 10.1089/ten.tec.2012.0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- V. Timothy Nayar
- Doheny Eye Institute, University of Southern California, Los Angeles, California
| | - James D. Weiland
- Doheny Eye Institute, University of Southern California, Los Angeles, California
| | - Andrea M. Hodge
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
|
17
|
Nayar V, Weiland J, Nelson C, Hodge A. Elastic and viscoelastic characterization of agar. J Mech Behav Biomed Mater 2012; 7:60-8. [DOI: 10.1016/j.jmbbm.2011.05.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/23/2011] [Accepted: 05/17/2011] [Indexed: 11/26/2022]
|
18
|
Chen K, Weiland JD. Mechanical Properties of Orbital Fat and Its Encapsulating Connective Tissue. J Biomech Eng 2011; 133:064505. [DOI: 10.1115/1.4004289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is an increasing need to understand the mechanical properties of human orbital fat and its encapsulating connective tissue (OFCT), but such knowledge is not available in the current literature. The purpose of the present study is to examine the mechanical properties of the OFCT. From 5 pairs of 76- to 92-year-old Caucasian human eyes and 33 5- to 7-month-old porcine eyes, 5 human and 11 porcine OFCT samples were dissected at the posterior pole or adjacent to the pole in the vertical, horizontal, and radial directions. Sample dimensions were fixed or measured. Tensile tests were performed on the samples in body-temperature saline. The stress-strain relationship was first approximately linear and then became nonlinear. The linear, the neo-Hookean, and the Mooney–Rivlin constants are reported in Tables 1 and 2. No statistical difference was found among their properties in the different directions in either the human or the porcine samples. Statistical differences were found between the human and the porcine material constants in the horizontal and radial directions. Among our material models, only the Mooney–Rivlin model was able to capture the mechanical properties of the OFCT in large deformation properly. The Mooney–Rivlin model was especially adaptive to the human data. This is the first time the mechanical properties of the human and porcine OFCT have been examined in the literature. We believe our data will provide valuable information to others regarding designing implant biomaterials in orbital treatments and developing computer models to study orbital biomechanics.
Collapse
Affiliation(s)
- Kinon Chen
- Department of Biomedical Engineering, University of Southern California, Denney Research Center 140, 1042 Downey Way, Los Angeles, CA 90089; Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455
| | - James D. Weiland
- Department of Ophthalmology, University of Southern California, Doheny Eye Institute, 1450 San Pablo Street, Los Angeles, CA 90033
| |
Collapse
|
19
|
Characterization of porcine sclera using instrumented nanoindentation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Anisotropic and inhomogeneous mechanical characteristics of the retina. J Biomech 2010; 43:1417-21. [DOI: 10.1016/j.jbiomech.2009.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/19/2009] [Accepted: 09/21/2009] [Indexed: 11/22/2022]
|