1
|
Böhler C, Vomero M, Soula M, Vöröslakos M, Porto Cruz M, Liljemalm R, Buzsaki G, Stieglitz T, Asplund M. Multilayer Arrays for Neurotechnology Applications (MANTA): Chronically Stable Thin-Film Intracortical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207576. [PMID: 36935361 DOI: 10.1002/advs.202207576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023]
Abstract
Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10-60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.
Collapse
Affiliation(s)
- Christian Böhler
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Vomero
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Maria Porto Cruz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Rickard Liljemalm
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - György Buzsaki
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, 10016, USA
| | - Thomas Stieglitz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Division of Nursing and Medical Technology, Luleå University of Technology, Luleå, 97187, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
2
|
Long Y, Li J, Yang F, Wang J, Wang X. Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004023. [PMID: 33898184 PMCID: PMC8061371 DOI: 10.1002/advs.202004023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Indexed: 05/21/2023]
Abstract
Wearable and implantable electroceuticals (WIEs) for therapeutic electrostimulation (ES) have become indispensable medical devices in modern healthcare. In addition to functionality, device miniaturization, conformability, biocompatibility, and/or biodegradability are the main engineering targets for the development and clinical translation of WIEs. Recent innovations are mainly focused on wearable/implantable power sources, advanced conformable electrodes, and efficient ES on targeted organs and tissues. Herein, nanogenerators as a hotspot wearable/implantable energy-harvesting technique suitable for powering WIEs are reviewed. Then, electrodes for comfortable attachment and efficient delivery of electrical signals to targeted tissue/organ are introduced and compared. A few promising application directions of ES are discussed, including heart stimulation, nerve modulation, skin regeneration, muscle activation, and assistance to other therapeutic modalities.
Collapse
Affiliation(s)
- Yin Long
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Jun Li
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Fan Yang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Jingyu Wang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Xudong Wang
- Department of Material Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| |
Collapse
|
3
|
Characterization and Analysis of Metal Adhesion to Parylene Polymer Substrate Using Scotch Tape Test for Peripheral Neural Probe. MICROMACHINES 2020; 11:mi11060605. [PMID: 32580430 PMCID: PMC7345729 DOI: 10.3390/mi11060605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
This paper presents measurement and FEM (Finite Element Method) analysis of metal adhesion force to a parylene substrate for implantable neural probe. A test device composed of 300 nm-thick gold and 30 nm-thick titanium metal electrodes on top of parylene substrate was prepared. The metal electrodes suffer from delamination during wet metal patterning process; thus, CF4 plasma treatment was applied to the parylene substrate before metal deposition. The two thin film metal layers were deposited by e-beam evaporation process. Metal electrodes had 200 μm in width, 300 μm spacing between the metal lines, and 5 mm length as the neural probe. Adhesion force of the metal lines to parylene substrate was measured with scotch tape test. Angle between the scotch tape and the test device substrate changed from 60° to 90° during characterization. Force exerted the scotch tape was recorded as the function of displacement of the scotch tape. It was found that a peak was created in measured force-displacement curve due to metal delamination. Metal adhesion was estimated 1.3 J/m2 by referring to the force peak and metal width at the force-displacement curve. Besides, the scotch tape test was simulated to comprehend delamination behavior of the test through FEM modeling.
Collapse
|
4
|
Green R. Are ‘next generation’ bioelectronics being designed using old technologies? ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2018-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rylie Green
- Department of Bioengineering, Imperial College London, London, SW7 2BP, UK
| |
Collapse
|
5
|
Agarwal K, Jegadeesan R, Guo YX, Thakor NV. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Rev Biomed Eng 2017; 10:136-161. [PMID: 28328511 DOI: 10.1109/rbme.2017.2683520] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.
Collapse
|
6
|
3D Finite Element Modeling of Epiretinal Stimulation: Impact of Prosthetic Electrode Size and Distance from the Retina. Int J Artif Organs 2015; 38:277-87. [DOI: 10.5301/ijao.5000412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Purpose A novel 3-dimensional (3D) finite element model was established to systematically investigate the impact of the diameter (Φ) of disc electrodes and the electrode-to-retina distance on the effectiveness of stimulation. Methods The 3D finite element model was established based on a disc platinum stimulating electrode and a 6-layered retinal structure. The ground electrode was placed in the extraocular space in direct attachment with sclera and treated as a distant return electrode. An established criterion of electric-field strength of 1000 Vm−1 was adopted as the activation threshold for RGCs. Results The threshold current (TC) increased linearly with increasing Φ and electrode-to-retina distance and remained almost unchanged with further increases in diameter. However, the threshold charge density (TCD) increased dramatically with decreasing electrode diameter. TCD exceeded the electrode safety limit for an electrode diameter of 50 μm at an electrode-to-retina distance of 50 to 200 μm. The electric field distributions illustrated that smaller electrode diameters and shorter electrode-to-retina distances were preferred due to more localized excitation of RGC area under stimulation of different threshold currents in terms of varied electrode size and electrode-to-retina distances. Under the condition of same-amplitude current stimulation, a large electrode exhibited an improved potential spatial selectivity at large electrode-to-retina distances. Conclusions Modeling results were consistent with those reported in animal electrophysiological experiments and clinical trials, validating the 3D finite element model of epiretinal stimulation. The computational model proved to be useful in optimizing the design of an epiretinal stimulating electrode for prosthesis.
Collapse
|
7
|
Jegadeesan R, Nag S, Agarwal K, Thakor NV, Guo YX. Enabling wireless powering and telemetry for peripheral nerve implants. IEEE J Biomed Health Inform 2015; 19:958-70. [PMID: 25910261 DOI: 10.1109/jbhi.2015.2424985] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Wireless power delivery and telemetry have enabled completely implantable neural devices. Current day implants are controlled, monitored, and powered wirelessly, eliminating the need for batteries and prolonging the lifetime. A brief overview of wireless platforms for such implantable devices is presented in this paper alongside an in-depth discussion of wireless platform for peripheral nerve implants covering design requirements, link design, and safety. Initial acute studies on the performance of the wireless power and data links in rodents are also presented.
Collapse
|
8
|
Jackson N, Verbrugghe P, Cuypers D, Adesanya K, Engel L, Glazer P, Dubruel P, Shacham-Diamand Y, Mendes E, Herijgers P, Stam F. A Cardiovascular Occlusion Method Based on the Use of a Smart Hydrogel. IEEE Trans Biomed Eng 2015; 62:399-406. [DOI: 10.1109/tbme.2014.2353933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Jiang X, Sui X, Lu Y, Yan Y, Zhou C, Li L, Ren Q, Chai X. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J Neuroeng Rehabil 2013; 10:48. [PMID: 23718827 PMCID: PMC3671245 DOI: 10.1186/1743-0003-10-48] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 05/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background Epiretinal implants based on microelectro-mechanical system (MEMS) technology with a polyimide (PI) material are being proposed for application. Many kinds of non-photosensitive PIs have good biocompatibility and stability as typical MEMS materials for implantable electrodes. However, the effects of MEMS microfabrication, sterilization and implantation using a photosensitive polyimide (PSPI) microelectrode array for epiretinal electrical stimulation has not been extensively examined. Methods A novel PSPI (Durimide 7510) microelectrode array for epiretinal electrical stimulation was designed, fabricated based on MEMS processing and microfabrication techniques. The biocompatibility of our new microelectrode was tested in vitro using an MTT assay and direct contact tests between the microelectrode surface and cells. Electrochemical impedance characteristics were tested based on a three-electrode testing method. The reliability and stability was evaluated by a chronic implantation of a non-functional array within the rabbit eye. Histological examination and SEM were performed to monitor possible damage of the retina and microelectrodes. Electrically evoked potentials (EEPs) were recorded during the acute stimulation of the retina. Results The substrate was made of PSPI and the electrode material was platinum (Pt). The PSPI microelectrode array showed good biocompatibility and appropriate impedance characteristics for epiretinal stimulation. After a 6-month epiretinal implantation in the eyes of rabbits, we found no local retinal toxicity and no mechanical compression caused by the array. The Pt electrodes adhesion to the PSPI remained stable. A response to electrical stimuli was with recording electrodes lying on the visual cortex. Conclusion We provide a relevant design and fundamental characteristics of a PSPI microelectrode array. Strong evidences on testing indicate that implantation is safe in terms of mechanical pressure and biocompatibility of PSPI microelectrode arrays on the retina. The dual-layer process we used proffers considerable advantages over the more traditional single-layer approach and can accommodate much many electrode sites. This lays the groundwork for a future, high-resolution retinal prosthesis with many more electrode sites based on the flexible PSPI thin film substrate.
Collapse
Affiliation(s)
- Xia Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cramer T, Campana A, Leonardi F, Casalini S, Kyndiah A, Murgia M, Biscarini F. Water-gated organic field effect transistors – opportunities for biochemical sensing and extracellular signal transduction. J Mater Chem B 2013; 1:3728-3741. [DOI: 10.1039/c3tb20340a] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
|
12
|
Abstract
Materials with the ability of dimensional changes on demand exhibit many potential applications ranging from adaptive composites that mimic biological functions under extreme conditions to microfluidics or neural implants to stimulate components of the nervous systems. These studies show the synthesis of temperature-induced reversibly expandable nanotubes that were prepared by polymerization of N-isopropylacrylamide (NIPAAM) in the presence of biologically active 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) diacetylenic phospholipids (PL). As a result, thermally responsive poly-NIPAM-phospholipid nanotubes (PNNTs) were prepared. Polymerization reactions occur within hydrophilic regions of PL bilayers, whereas PL hydrophobic zones facilitate transport and supply of the monomer for polymerization. The unique feature of PNNTs is that, above 37 °C, the outer diameter (OD) as well as the wall thickness (WT) shrink by 20 and 55%, respectively, whereas the inner diameter (ID) increases by ∼16%. This behavior is attributed to the PNIPAM backbone buckling induced by local rearrangements within PL bilayered morphologies. The presence of acetylenic moieties along the PL bilayers in PNNTs provides an opportunity for irreversible "locking" of designable dimensions, which is facilitated by the formation of cross-linked PNNTs (CL-PNNTs).
Collapse
Affiliation(s)
- Shintaro Kawano
- School of Polymers and High Performance Materials,
Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, Mississippi
39406, United States
| | - Marek W. Urban
- School of Polymers and High Performance Materials,
Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, Mississippi
39406, United States
| |
Collapse
|
13
|
Ray A, Lee EJ, Humayun MS, Weiland JD. Continuous electrical stimulation decreases retinal excitability but does not alter retinal morphology. J Neural Eng 2011; 8:045003. [PMID: 21775787 DOI: 10.1088/1741-2560/8/4/045003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinal prostheses aim to provide visual perception through electrical stimulation of the retina. Hence they have to operate between threshold charge density and maximum safe charge density. To date most studies in the retina have concentrated on understanding the threshold, while stimulation safety has predominantly been studied in structures other than the retina. Toward this end, the present study focuses on determining the effect of continuous electrical stimulation of the retina both on retinal morphology and on the electrically evoked responses in the superior colliculus in a rodent model. The results demonstrate that the retina is able to tolerate 1 h long stimulation with only minor changes evident in retinal histology when examined three to 14 days later, even at charge densities (0.68 mC cm(-2)) above the safe limit of platinum delivered at high stimulus frequency (300 Hz). However, this continuous electrical stimulation causes an elevation in the threshold of the electrically evoked response in the superior colliculus, indicating some form of adaptation to continuous stimulation.
Collapse
Affiliation(s)
- A Ray
- University of Southern California, Biomedical Engineering, 1042 Downey Way, DRB 140, Los Angeles, CA 90089-1111, USA
| | | | | | | |
Collapse
|
14
|
Prokofyeva E, Troeger E, Wilke R, Zrenner E. Early Visual Symptom Patterns in Inherited Retinal Dystrophies. Ophthalmologica 2011; 226:151-6. [DOI: 10.1159/000330381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/20/2011] [Indexed: 11/19/2022]
|
15
|
|
16
|
Stieglitz T. Integration of Microfluidic Capabilities into Micromachined Neural Implants. ACTA ACUST UNITED AC 2010. [DOI: 10.1260/1759-3093.1.2.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Abstract
PURPOSE OF REVIEW The field of vitreoretinal disease and surgery has seen tremendous growth and innovation in recent years. In view of the latest advances, the present article highlights some of the current trends in vitreoretinal research that promise to be revolutionary in the coming decade. RECENT FINDINGS Pharmacologic vitreolysis may greatly impact the current approach to treatment of various vitreoretinopathies. New methods of drug delivery to the posterior segment either via nanoparticles or sustained-release intravitreal implants may supplant repetitive intravitreal injections. Gene therapy may become more common as the genetic basis of inherited retinal diseases is further elucidated. Stem-cell transplantation and the implantation of artificial retinal prostheses offer promise for long-term sight restoration. SUMMARY Based on recent advances in ongoing vitreoretinal research, the spectrum of treatable retinal disease is likely to expand significantly in the coming decade, with enormous public health impact, as well as significant changes in the practice patterns of retina specialists worldwide.
Collapse
|