1
|
Begg J, Jelen U, Moutrie Z, Oliver C, Holloway L, Brown R. ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators. Phys Eng Sci Med 2023; 46:1-17. [PMID: 36806156 PMCID: PMC10030536 DOI: 10.1007/s13246-023-01223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Consistency and clear guidelines on dosimetry are essential for accurate and precise dosimetry, to ensure the best patient outcomes and to allow direct dose comparison across different centres. Magnetic Resonance Imaging Linac (MRI-linac) systems have recently been introduced to Australasian clinics. This report provides recommendations on reference dosimetry measurements for MRI-linacs on behalf of the Australiasian College of Physical Scientists and Engineers in Medicine (ACPSEM) MRI-linac working group. There are two configurations considered for MRI-linacs, perpendicular and parallel, referring to the relative direction of the magnetic field and radiation beam, with different impacts on dose deposition in a medium. These recommendations focus on ion chambers which are most commonly used in the clinic for reference dosimetry. Water phantoms must be MR safe or conditional and practical limitations on phantom set-up must be considered. Solid phantoms are not advised for reference dosimetry. For reference dosimetry, IAEA TRS-398 recommendations cannot be followed completely due to physical differences between conventional linac and MRI-linac systems. Manufacturers' advice on reference conditions should be followed. Beam quality specification of TPR20,10 is recommended. The configuration of the central axis of the ion chamber relative to the magnetic field and radiation beam impacts the chamber response and must be considered carefully. Recommended corrections to delivered dose are [Formula: see text], a correction for beam quality and [Formula: see text], for the impact of the magnetic field on dosimeter response in the magnetic field. Literature based values for [Formula: see text] are given. It is important to note that this is a developing field and these recommendations should be used together with a review of current literature.
Collapse
Affiliation(s)
- Jarrad Begg
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.
| | - Urszula Jelen
- St Vincents Clinic, GenesisCare, Darlinghurst, NSW, 2010, Australia
| | - Zoe Moutrie
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
| | - Chris Oliver
- Primary Standards Dosimetry Laboratory, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, 3085, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, 2505, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, 3085, Australia
| | | |
Collapse
|
2
|
Uijtewaal P, Côté B, Foppen T, de Vries W, Woodings S, Borman P, Lambert-Girard S, Therriault-Proulx F, Raaymakers B, Fast M. Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac. Phys Med Biol 2023; 68. [PMID: 36638536 DOI: 10.1088/1361-6560/acb30c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Objective.Adaptive radiotherapy techniques available on the MR-linac, such as daily plan adaptation, gating, and dynamic tracking, require versatile dosimetric detectors to validate end-to-end workflows. Plastic scintillator detectors (PSDs) offer great potential with features including: water equivalency, MRI-compatibility, and time-resolved dose measurements. Here, we characterize the performance of the HYPERSCINT RP-200 PSD (MedScint, Quebec, CA) in a 1.5 T MR-linac, and we demonstrate its suitability for dosimetry, including in a moving target.Approach.Standard techniques of detector testing were performed using a Beamscan water tank (PTW, Freiburg, DE) and compared to microDiamond (PTW, Freiburg, DE) readings. Orientation dependency was tested using the same phantom. An RW3 solid water phantom was used to evaluate detector consistency, dose linearity, and dose rate dependence. To determine the sensitivity to motion and to MRI scanning, the Quasar MRI4Dphantom (Modus, London, ON) was used statically or with sinusoidal motion (A= 10 mm,T= 4 s) to compare PSD and Semiflex ionization chamber (PTW, Freiburg, DE) readings. Conformal beams from gantry 0° and 90° were used as well as a 15-beam 8 × 7.5 Gy lung IMRT plan.Main results.Measured profiles, PDD curves and field-size dependence were consistent with the microDiamond readings with differences well within our clinical tolerances. The angular dependence gave variations up to 0.8% when not irradiating directly from behind the scintillation point. Experiments revealed excellent detector consistency between repeated measurements (SD = 0.06%), near-perfect dose linearity (R2= 1) and a dose rate dependence <0.3%. Dosimetric effects of MRI scanning (≤0.3%) and motion (≤1.3%) were minimal. Measurements were consistent with the Semiflex (differences ≤1%), and with the treatment planning system with differences of 0.8% and 0.4%, with and without motion.Significance.This study demonstrates the suitability of the HYPERSCINT PSD for accurate time-resolved dosimetry measurements in the 1.5 T MR-linac, including during MR scanning and target motion.
Collapse
Affiliation(s)
- Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Benjamin Côté
- MedScint, 1405 Bd du Parc Technologique, Québec, QC G1P 4P5, Canada
| | - Thomas Foppen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Wilfred de Vries
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Simon Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | - Bas Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Gayol A, Malano F, Ribo Montenovo C, Pérez P, Valente M. Dosimetry Effects Due to the Presence of Fe Nanoparticles for Potential Combination of Hyperthermic Cancer Treatment with MRI-Based Image-Guided Radiotherapy. Int J Mol Sci 2022; 24:ijms24010514. [PMID: 36613959 PMCID: PMC9820326 DOI: 10.3390/ijms24010514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Nanoparticles have proven to be biocompatible and suitable for many biomedical applications. Currently, hyperthermia cancer treatments based on Fe nanoparticle infusion excited by alternating magnetic fields are commonly used. In addition to this, MRI-based image-guided radiotherapy represents, nowadays, one of the most promising accurate radiotherapy modalities. Hence, assessing the feasibility of combining both techniques requires preliminary characterization of the corresponding dosimetry effects. The present work reports on a theoretical and numerical simulation feasibility study aimed at pointing out preliminary dosimetry issues. Spatial dose distributions incorporating magnetic nanoparticles in MRI-based image-guided radiotherapy have been obtained by Monte Carlo simulation approaches accounting for all relevant radiation interaction properties as well as charged particles coupling with strong external magnetic fields, which are representative of typical MRI-LINAC devices. Two main effects have been evidenced: local dose enhancement (up to 60% at local level) within the infused volume, and non-negligible changes in the dose distribution at the interfaces between different tissues, developing to over 70% for low-density anatomical cavities. Moreover, cellular uptakes up to 10% have been modeled by means of considering different Fe nanoparticle concentrations. A theoretical temperature-dependent model for the thermal enhancement ratio (TER) has been used to account for radiosensitization due to hyperthermia. The outcomes demonstrated the reliability of the Monte Carlo approach in accounting for strong magnetic fields and mass distributions from patient-specific anatomy CT scans to assess dose distributions in MRI-based image-guided radiotherapy combined with magnetic nanoparticles, while the hyperthermic radiosensitization provides further and synergic contributions.
Collapse
Affiliation(s)
- Amiel Gayol
- Instituto de Física E. Gaviola (IFEG), CONICET & Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Francisco Malano
- Centro de Excelencia de Física e Ingeniería en Salud (CFIS), Departamento de Ciencias Físicas, Universidad de La Frontera, Av. Salazar 01145, Casilla 54D, Temuco 4811230, Chile
- Correspondence: (F.M.); (M.V.)
| | - Clara Ribo Montenovo
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Pedro Pérez
- Instituto de Física E. Gaviola (IFEG), CONICET & Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Mauro Valente
- Instituto de Física E. Gaviola (IFEG), CONICET & Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Centro de Excelencia de Física e Ingeniería en Salud (CFIS), Departamento de Ciencias Físicas, Universidad de La Frontera, Av. Salazar 01145, Casilla 54D, Temuco 4811230, Chile
- Correspondence: (F.M.); (M.V.)
| |
Collapse
|
4
|
Jean E, Lambert-Girard S, Therriault-Proulx F, Beaulieu L. Hybrid Cerenkov-scintillation detector validation using Monte Carlo simulations. Phys Med Biol 2022; 68. [PMID: 36541552 DOI: 10.1088/1361-6560/aca74d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Objective.This study aimed at investigating through Monte Carlo simulations the limitations of a novel hybrid Cerenkov-scintillation detector and the associated method for irradiation angle measurements.Approach.Using Monte Carlo simulations, previous experimental irradiations of the hybrid detector with a linear accelerator were replicated to evaluate its general performances and limitations. Cerenkov angular calibration curves and irradiation angle measurements were then compared. Furthermore, the impact of the Cerenkov light energy dependency on the detector accuracy was investigated using the energy spectra of electrons travelling through the detector.Main results.Monte Carlo simulations were found to be in good agreement with experimental values. The irradiation angle absolute mean error was found to be less than what was obtained experimentally, with a maximum value of 1.12° for the 9 MeV beam. A 0.4% increase of the ratio of electrons having an energy below 1 MeV to the total electrons was found to impact the Cerenkov light intensity collected as a function of the incident angle. The effect of the Cerenkov intensity variation on the measured angle was determined to vary according to the slope of the angular calibration curve. While the contribution of scattered electrons with a lower energy affects the detector accuracy, the greatest discrepancies result from the limitations of the calculation method and the calibration curve itself.Significance.A precise knowledge of the limitations of the hybrid detector and the irradiation angle calculation method is crucial for a clinical implementation. Moreover, the simulations performed in this study also corroborate hypotheses made regarding the relations between multiple Cerenkov dependencies and observations from the experimental measurements.
Collapse
Affiliation(s)
- Emilie Jean
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Quebec, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Quebec, QC, Canada.,Département de radio-oncologie du CIUSSS-MCQ, CHAUR de Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Quebec, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Quebec, QC, Canada
| |
Collapse
|
5
|
Jean E, Lambert-Girard S, Therriault-Proulx F, Beaulieu L. External beam irradiation angle measurement using a hybrid Cerenkov-scintillation detector. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6b79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. In this study, we propose a novel approach designed to take advantage of the Cerenkov light angular dependency to perform a direct measurement of an external beam irradiation angle. Approach. A Cerenkov probe composed of a 10 mm long filtered sensitive volume of clear PMMA optical fibre was built. Both filtered and raw Cerenkov signals from the transport fibre were collected through a single 1 mm diameter transport fibre. An independent plastic scintillation detector composed of 10 mm BCF12 scintillating fibre was also used for simultaneous dose measurements. A first series of measurements aimed at validating the ability to account for the Cerenkov electron energy spectrum dependency by simultaneously measuring the deposited dose, thus isolating signal variations resulting from the angular dependency. Angular calibration curve for fixed dose irradiations and incident angle measurements using electron and photon beams where also achieved. Main results. The beam nominal energy was found to have a significant impact on the shapes of the angular calibration curves. This can be linked to the electron energy spectrum dependency of the Cerenkov emission cone. Irradiation angle measurements exhibit an absolute mean error of 1.86° and 1.02° at 6 and 18 MV, respectively. Similar results were obtained with electron beams and the absolute mean error reaches 1.97°, 1.66°, 1.45° and 0.95° at 9, 12, 16 and 20 MeV, respectively. Reducing the numerical aperture of the Cerenkov probe leads to an increased angular dependency for the lowest energy while no major changes were observed at higher energy. This allowed irradiation angle measurements at 6 MeV with a mean absolute error of 4.82°. Significance. The detector offers promising perspectives as a potential tool for future quality assurance applications in radiotherapy, especially for stereotactic radiosurgery (SRS), magnetic resonance image-guided radiotherapy (MRgRT) and brachytherapy applications.
Collapse
|
6
|
Time-resolved plastic scintillator dosimetry in MR linear accelerators without image distortion. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Alexander DA, Bruza P, Rassias AG, Andreozzi JM, Pogue BW, Zhang R, Gladstone DJ. Visual Isocenter Position Enhanced Review (VIPER): a Cherenkov imaging-based solution for MR-linac daily QA. Med Phys 2021; 48:2750-2759. [PMID: 33887796 DOI: 10.1002/mp.14892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This study demonstrates a robust Cherenkov imaging-based solution to MR-Linac daily QA, including mechanical-imaging-radiation isocenter coincidence verification. METHODS A fully enclosed acrylic cylindrical phantom was designed to be mountable to the existing jig, indexable to the treatment couch. An ABS plastic conical structure was fixed inside the phantom, held in place with 3D-printed spacers, and filled with water allowing for high edge contrast on MR imaging scans. Both a star shot plan and a four-angle sheet beam plan were delivered to the phantom; the former allowed for radiation isocenter localization in the x-z plane (A/P and L/R directions) relative to physical landmarks on the phantom, and the latter allowed for the longitudinal position of the sheet beam to be encoded as a ring of Cherenkov radiation emitted from the phantom, allowing for isocenter localization on the y-axis (S/I directions). A custom software application was developed to perform near-real-time analysis of the data by any clinical user. RESULTS Calibration procedures show that linearity between longitudinal position and optical ring diameter is high (R2 > 0.99), and that RMSE is low (0.184 mm). The star shot analysis showed a minimum circle radius of 0.34 mm. The final isocenter coincidence measurements in the lateral, longitudinal, and vertical directions were -0.61 mm, 0.55 mm, and -0.14 mm, respectively, and the total 3D distance coincidence was 0.83 mm, with each of these being below 2 mm tolerance. CONCLUSION This novel system provided an efficient, MR safe, all-in-one method for acquisition and near-real-time analysis of isocenter coincidence data. This represents a direct measurement of the 3D isocentricity. The combination of this phantom and the custom analysis application makes this solution readily clinically deployable after the longitudinal analysis of performance consistency.
Collapse
Affiliation(s)
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Aris G Rassias
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
8
|
Madden L, Roberts N, Jelen U, Dong B, Holloway L, Metcalfe P, Rosenfeld A, Li E. In-line MRI-LINAC depth dose measurements using an in-house plastic scintillation dosimeter. Biomed Phys Eng Express 2021; 7. [PMID: 33530066 DOI: 10.1088/2057-1976/abe295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/02/2021] [Indexed: 11/12/2022]
Abstract
Plastic scintillation dosimeters (PSDs) have many properties that make them desirable for relative dosimetry with MRI-LINACs. An in-house PSD, Farmer ionisation chamber and Gafchromic EBT3 film were used to measure central axis percentage depth dose distributions (PDDs) at the Australian MRI-LINAC Mean errors were calculated between each detector's responses, where the in-house PSD was on average within 0.7% of the Farmer chamber and 1.4% of film, while the Farmer chamber and film were on average within 1.1% of each other. However, the PSD systematically over-estimated the dose as depth increased, approaching a maximum overestimation of the order of 3.5% for the smallest field size measured. This trend was statistically insignificant for all other field sizes measured; further investigation is required to determine the source of this effect. The calculated values of mean absolute error are comparable to the those of trusted dosimeters reported in the literature. These mean absolute errors, and the ubiquity of desirable dosimetric qualities inherent to PSDs suggest that PSDs in general are accurate for relative dosimetry with the MRI-LINAC. Further investigation is required into the source of the reported systematic trends dependent on field-size and depth of measurement.
Collapse
Affiliation(s)
- Levi Madden
- Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Natalia Roberts
- Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Urszula Jelen
- GenesisCare St Vincent's Clinic, Darlinghurst, NSW 2010, Australia
| | - Bin Dong
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Lois Holloway
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.,Liverpool Cancer Therapy Centre, Liverpool, NSW 2170, Australia.,Macauthur Cancer Therapy Clinic, Campbelltown, NSW 2560, Australia
| | - Peter Metcalfe
- Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia.,Illawarra Medical and Health Research Institute, University of Wollongong, NSW 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia.,Illawarra Medical and Health Research Institute, University of Wollongong, NSW 2522, Australia
| | - Enbang Li
- Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
9
|
Alexander DA, Zhang R, Brůža P, Pogue BW, Gladstone DJ. Scintillation imaging as a high‐resolution, remote, versatile 2D detection system for MR‐linac quality assurance. Med Phys 2020; 47:3861-3869. [PMID: 32583484 PMCID: PMC10363284 DOI: 10.1002/mp.14353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To demonstrate the potential benefits of remote camera-based scintillation imaging for routine quality assurance (QA) measurements for magnetic resonance guided radiotherapy (MRgRT) linear accelerators. METHODS A wall-mounted CMOS camera with a time-synchronized intensifier was used to image photons produced from a scintillation screen in response to dose deposition from a 6 MV FFF x-ray beam produced by a 0.35 T MR-linac. The oblique angle of the field of view was corrected using a projective transform from a checkerboard calibration target. Output sensitivity and constancy was measured using the scintillator and benchmarked against an A28 ion chamber. Field cross-plane and in-plane profiles were measured for field sizes ranging from 1.68 × 1.66 cm2 to 20.02 × 19.92 cm2 with both scintillation imaging and using an IC profiler. Multileaf collimator (MLC) shifts were introduced to test sensitivity of the scintillation imaging system to small spatial deviations. A picket fence test and star-shot were delivered to both the scintillator and EBT3 film to compare accuracy in measuring MLC positions and isocenter size. RESULTS The scintillation imaging system showed comparable sensitivity and linearity to the ion chamber in response to changes in machine output down to 0.5 MU (R2 = 0.99). Cross-plane profiles show strong agreement with defined field sizes using full width half maximum (FWHM) measurement of <2 mm for field sizes below 15 cm, but the oblique viewing angle was the limiting factor in accuracy of in-plane profile widths. However, the system provided high-resolution profiles in both directions for constancy measurements. Small shifts in the field position down to 0.5 mm were detectable with <0.1 mm accuracy. Multileaf collimator positions as measured with both scintillation imaging and EBT3 film were measured within ± 1 mm tolerance and both detection systems produced similar isocenter sizes from the star-shot analysis (0.81 and 0.83 mm radii). CONCLUSIONS Remote scintillation imaging of a two-dimensional screen provided a rapid, versatile, MR-compatible solution to many routine quality assurance procedures including output constancy, profile flatness and symmetry constancy, MLC position verification and isocenter size. This method is high-resolution, does not require post-irradiation readout, and provides simple, instantaneous data acquisition. Full automation of the readout and processing could make this a very simple but effective QA tool, and is adaptable to all medical accelerators.
Collapse
Affiliation(s)
| | - Rongxiao Zhang
- Thayer School of Engineering and Geisel School of Medicine Dartmouth College Hanover NH03755USA
- Norris Cotton Cancer Center Dartmouth‐Hitchcock Medical Center Lebanon NH03756USA
| | - Petr Brůža
- Thayer School of Engineering Dartmouth College Hanover NH03755USA
| | - Brian W. Pogue
- Thayer School of Engineering and Geisel School of Medicine Dartmouth College Hanover NH03755USA
- Norris Cotton Cancer Center Dartmouth‐Hitchcock Medical Center Lebanon NH03756USA
| | - David J. Gladstone
- Thayer School of Engineering and Geisel School of Medicine Dartmouth College Hanover NH03755USA
- Norris Cotton Cancer Center Dartmouth‐Hitchcock Medical Center Lebanon NH03756USA
| |
Collapse
|
10
|
Darafsheh A, Hao Y, Maraghechi B, Cammin J, Reynoso FJ, Khan R. Influence of 0.35 T magnetic field on the response of EBT3 and EBT-XD radiochromic films. Med Phys 2020; 47:4543-4552. [PMID: 32502280 DOI: 10.1002/mp.14313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the inconsistency of recent literature on the effect of magnetic field on the response of radiochromic films, we studied the influence of 0.35 T magnetic field on dosimetric response of EBT3 and EBT-XD GafchromicTM films. METHODS Two different models of radiochromic films, EBT3 and EBT-XD, were investigated. Pieces of films samples from two different batches for each model were irradiated at different dose levels ranging from 1 to 20 Gy using 6 MV flattening filter free (FFF) x-rays generated by a clinical MR-guided radiotherapy system (B = 0.35 T). Film samples from the same batch were irradiated at corresponding dose levels using 6 MV FFF beam from a conventional linac (B = 0) for comparison. The net optical density was measured 48 h postirradiation using a flatbed scanner. The absorbance spectra were also measured over 500-700 nm wavelength range using a fiber-coupled spectrometer with 2.5 nm resolution. To study the effect of fractionated dose delivery to EBT3 (/EBT-XD) films, 8 (/16) Gy dose was delivered in four 2 (/4) Gy fractions with 24 h interval between fractions. RESULTS No significant difference was found in the net optical density and net absorbance of the films irradiated with or without the presence of magnetic field. No dependency on the orientation of the film during irradiation with respect to the magnetic field was observed. The fractionated dose delivery resulted in the same optical density as delivering the whole dose in a single fraction. CONCLUSIONS The 0.35 T magnetic field employed in the ViewRay® MR-guided radiotherapy system did not show any significant influence on the response of EBT3 and EBT-XD GafchromicTM films.
Collapse
Affiliation(s)
- Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Borna Maraghechi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jochen Cammin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francisco J Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rao Khan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|