1
|
Mondragón-Herrera LI, Vargas-Coronado RF, Carrillo-Escalante H, Cauich-Rodríguez JV, Hernández-Sánchez F, Velasco-Santos C, Avilés F. Mechanical, Thermal, and Physicochemical Properties of Filaments of Poly (Lactic Acid), Polyhydroxyalkanoates and Their Blend for Additive Manufacturing. Polymers (Basel) 2024; 16:1062. [PMID: 38674981 PMCID: PMC11053644 DOI: 10.3390/polym16081062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Polymeric blends are employed in the production of filaments for additive manufacturing to balance mechanical and processability properties. The mechanical and thermal properties of polymeric filaments made of poly (lactic acid) (PLA), polyhydroxyalkanoates (PHA), and its blend (PLA-PHA) are investigated herein and correlated to their measured structural and physicochemical properties. PLA exhibits the highest stiffness and tensile strength, but lower toughness. The mechanical properties of the PLA-PHA blend were similar to those of PLA, but with a significantly higher toughness. Despite the lower mechanical properties of neat PHA, incorporating a small amount (12 wt.%) of PHA into PLA significantly enhances toughness (approximately 50%) compared to pure PLA. The synergistic effect is attributed to the spherulitic morphology of blended PHA in PLA, promoting interactions between the amorphous regions of both polymers. Thermal stability is notably improved in the PLA-PHA blend, as determined by thermogravimetric analysis. The blend also exhibits lower cold crystallization and glass transition temperatures as compared to PLA, which is beneficial for additive manufacturing. Following additive manufacturing, X-ray photoelectron spectroscopic showed that the three filaments present an increase in C-C and C=O bonds associated with the loss of C-O bonds. The thermal process induces a slight increase in crystallinity in PHA due to chain reorganization. The study provides insights into the thermal and structural changes occurring during the melting process of additive manufacturing.
Collapse
Affiliation(s)
- L. Itzkuautli Mondragón-Herrera
- Centro de Investigación Científica de Yucatán, A. C., Materials Department, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (L.I.M.-H.); (R.F.V.-C.); (F.H.-S.)
| | - R. F. Vargas-Coronado
- Centro de Investigación Científica de Yucatán, A. C., Materials Department, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (L.I.M.-H.); (R.F.V.-C.); (F.H.-S.)
| | - H. Carrillo-Escalante
- Centro de Investigación Científica de Yucatán, A. C., Materials Department, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (L.I.M.-H.); (R.F.V.-C.); (F.H.-S.)
| | - J. V. Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán, A. C., Materials Department, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (L.I.M.-H.); (R.F.V.-C.); (F.H.-S.)
| | - F. Hernández-Sánchez
- Centro de Investigación Científica de Yucatán, A. C., Materials Department, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (L.I.M.-H.); (R.F.V.-C.); (F.H.-S.)
| | - C. Velasco-Santos
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México Campus Querétaro, Av. Tecnológico s/n, esq. Gral. Mariano Escobedo, Col. Centro Histórico, Santiago de Querétaro 76000, Querétaro, Mexico;
| | - F. Avilés
- Centro de Investigación Científica de Yucatán, A. C., Materials Department, Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (L.I.M.-H.); (R.F.V.-C.); (F.H.-S.)
| |
Collapse
|
2
|
Jain A, Upadhyay S, Sahai A, Sharma RS. Reinforcement‐material effects on the compression behavior of polymer composites. J Appl Polym Sci 2023. [DOI: 10.1002/app.53722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Akash Jain
- 3D Printing and Additive Manufacturing Lab, Department of Mechanical Engineering Dayalbagh Educational Institute Agra India
| | - Saloni Upadhyay
- 3D Printing and Additive Manufacturing Lab, Department of Mechanical Engineering Dayalbagh Educational Institute Agra India
| | - Ankit Sahai
- 3D Printing and Additive Manufacturing Lab, Department of Mechanical Engineering Dayalbagh Educational Institute Agra India
| | - Rahul Swarup Sharma
- 3D Printing and Additive Manufacturing Lab, Department of Mechanical Engineering Dayalbagh Educational Institute Agra India
| |
Collapse
|
3
|
Oladapo BI, Ismail SO, Ikumapayi OM, Karagiannidis PG. Impact of rGO-coated PEEK and lattice on bone implant. Colloids Surf B Biointerfaces 2022; 216:112583. [PMID: 35662072 DOI: 10.1016/j.colsurfb.2022.112583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
The composite coating can effectively inhibit bacterial proliferation and promote the expression of bone-building genes in-vitro. Therefore, a novel production was used to produce poly-ether-ether-ketone, and reduced graphene oxide (PEEK-rGO) scaffolds with ratios of 1-3%, combining a different lattice for a bone implant. An inexpensive method was developed to prepare the new coatings on the PEEK scaffold with reduced graphene oxide (rGO). Mechanical testing, data analysis and cell culture tests for in-vitro biocompatibility scaffold characterisation for the PEEK composite were conducted. Novel computation microanalysis of four-dimensional (4D) printing of microstructure of PEEK-rGO concerning the grain size and three dimensional (3D) morphology was influenced by furrow segmentation of grains cell growth on the composite, which was reduced from an average of 216-155 grains and increased to 253 grains on the last day. The proposed spherical nanoparticles cell grew with time after dispersed PEEK nanoparticles in calcium hydroxyapatite (cHAp) grains. Also, the mechanical tests were carried out to validate the strength of the new composites and compare them to that of a natural bone. The established 3D-printed PEEK composite scaffolds significantly exhibited the potential of bone implants for biomimetic heterogeneous bone repair.
Collapse
Affiliation(s)
- Bankole I Oladapo
- School of Engineering, Faculty of Technology, University of Sunderland, UK; Sustainable Development, De Montfort University Leicester, UK.
| | - Sikiru O Ismail
- Centre for Engineering Research, Department of Engineering, University of Hertfordshire, UK
| | - Omolayo M Ikumapayi
- Department of Mechanical and Mechatronics Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
| | | |
Collapse
|
4
|
Aworinde AK, Emagbetere E, Adeosun SO, Akinlabi ET. Polylactide and its Composites on Various Scales of Hardness. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2021. [DOI: 10.47836/pjst.29.2.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polylactide (PLA) has become a widely applied material. Its hardness property has, however, not been a subject of intense study. This study attempts to examine the hardness values of Polylactide and its composites on ten hardness scales. Polylactide composites were developed using three reinforcements (i.e., chitosan, chitin, and titanium powders). The compositing method was the melt-blending technique. Vickers microindentation test was carried out on all the developed samples. The experimental values obtained were related to nine (9) other scales of hardness via an online reference interface. Results showed that the Brinell and Rockwell hardness scales agreed, to a large extent, with the experimental values from several studies. Hence, this work can serve as a reference material on the Brinell and Rockwell hardness values of the unreinforced and reinforced composites considered in this study. The developed materials were also represented on the Mohs scale of hardness with unreinforced PLA having the least value of hardness which corresponds to the value of gypsum on the Mohs scale while the PLA reinforced with 8.33 weight (wt.) % of titanium powder has the highest value of hardness corresponding to the value of a material in-between calcite and fluorite. The hardness values obtained on Shore scleroscope could not agree with the experimental values from various studies. Succinctly, the three particulate fillers increased the hardness properties of PLA. The results of this study would go a long way in helping industrialists and researchers in the correct applications of PLA and its composites.
Collapse
|
5
|
Vallejos Baier R, Contreras Raggio JI, Toro Arancibia C, Bustamante M, Pérez L, Burda I, Aiyangar A, Vivanco JF. Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111945. [PMID: 33812577 DOI: 10.1016/j.msec.2021.111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Additive manufacturing encompasses a plethora of techniques to manufacture structures from a computational model. Among them, fused filament fabrication (FFF) relies on heating thermoplastics to their fusion point and extruding the material through a nozzle in a controlled pattern. FFF is a suitable technique for tissue engineering, given that allows the fabrication of 3D-scaffolds, which are utilized for tissue regeneration purposes. The objective of this study is to assess a low-cost/open-source 3D printer (In-House), by manufacturing both solid and porous samples with relevant microarchitecture in the physiological range (100-500 μm pore size), using an equivalent commercial counterpart for comparison. For this, compressive tests in solid and porous scaffolds manufactured in both printers were performed, comparing the results with finite element analysis (FEA) models. Additionally, a microarchitectural analysis was done in samples from both printers, comparing the measurements of both pore size and porosity to their corresponding computer-aided design (CAD) models. Moreover, a preliminary biological assessment was performed using scaffolds from our In-House printer, measuring cell adhesion efficiency. Finally, Fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR) was performed to evaluate chemical changes in the material (polylactic acid) after fabrication in each printer. The results show that the In-House printer achieved generally better mechanical behavior and resolution capacity than its commercial counterpart, by comparing with their FEA and CAD models, respectively. Moreover, a preliminary biological assessment indicates the feasibility of the In-House printer to be used in tissue engineering applications. The results also show the influence of pore geometry on mechanical properties of 3D-scaffolds and demonstrate that properties such as the apparent elastic modulus (Eapp) can be controlled in 3D-printed scaffolds.
Collapse
Affiliation(s)
- Raúl Vallejos Baier
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile.
| | | | | | - Miguel Bustamante
- Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago, Chile.
| | - Luis Pérez
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Iurii Burda
- Mechanical Systems Engineering, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | - Ameet Aiyangar
- Mechanical Systems Engineering, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland; Department of Orthopaedic Surgery, University of Pittsburgh, USA.
| | - Juan F Vivanco
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile.
| |
Collapse
|
6
|
Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5010029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available literature on fibre reinforced FDM to investigate how the mechanical, physical, and thermal properties of 3D-printed fibre reinforced thermoplastic composite materials are affected by printing parameters (e.g., printing speed, temperature, building principle, etc.) and constitutive materials properties, i.e., polymeric matrices, reinforcements, and additional materials. In particular, the reinforcement fibres are categorized in this review considering the different available types (e.g., carbon, glass, aramid, and natural), and obtainable architectures divided accordingly to the fibre length (nano, short, and continuous). The review attempts to distil the optimum processing parameters that could be deduced from across different studies by presenting graphically the relationship between process parameters and properties. This publication benefits the material developer who is investigating the process parameters to optimize the printing parameters of novel materials or looking for a good constituent combination to produce composite FDM filaments, thus helping to reduce material wastage and experimental time.
Collapse
|
7
|
Wickramasinghe S, Do T, Tran P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers (Basel) 2020; 12:E1529. [PMID: 32664374 PMCID: PMC7407763 DOI: 10.3390/polym12071529] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/03/2022] Open
Abstract
Fused deposition modelling (FDM) is one of the fastest-growing additive manufacturing methods used in printing fibre-reinforced composites (FRC). The performances of the resulting printed parts are limited compared to those by other manufacturing methods due to their inherent defects. Hence, the effort to develop treatment methods to overcome these drawbacks has accelerated during the past few years. The main focus of this study is to review the impact of those defects on the mechanical performance of FRC and therefore to discuss the available treatment methods to eliminate or minimize them in order to enhance the functional properties of the printed parts. As FRC is a combination of polymer matrix material and continuous or short reinforcing fibres, this review will thoroughly discuss both thermoplastic polymers and FRCs printed via FDM technology, including the effect of printing parameters such as layer thickness, infill pattern, raster angle and fibre orientation. The most common defects on printed parts, in particular, the void formation, surface roughness and poor bonding between fibre and matrix, are explored. An inclusive discussion on the effectiveness of chemical, laser, heat and ultrasound treatments to minimize these drawbacks is provided by this review.
Collapse
Affiliation(s)
- Sachini Wickramasinghe
- Department of Civil & Infrastructure Engineering, RMIT University, Melbourne, VIC 3000, Australia;
| | - Truong Do
- College of Engineering and Computer Science, VinUniversity, Hanoi 14000, Vietnam;
| | - Phuong Tran
- Department of Civil & Infrastructure Engineering, RMIT University, Melbourne, VIC 3000, Australia;
- CIRTECH Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 70000, Vietnam
| |
Collapse
|