1
|
Wang H, Wang Z, Li Y, Xu T, Zhang Q, Yang M, Wang P, Gu Y. A Novel Theranostic Nanoprobe for In Vivo Singlet Oxygen Detection and Real-Time Dose-Effect Relationship Monitoring in Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902185. [PMID: 31389152 DOI: 10.1002/smll.201902185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Singlet oxygen, as the main member of reactive oxygen species, plays a significant role in cancer photodynamic therapy. However, the in vivo real-time detection of singlet oxygen remains challenging. In this work, a Förster resonance energy transfer (FRET)-based upconversion nanoplatform for monitoring the singlet oxygen in living systems is developed, with the ability to evaluate the in vivo dose-effect relationship between singlet oxygen and photodynamic therapy (PDT) efficacy. In details, this nanoplatform is composed of core-shell upconversion nanoparticles (UCNPs), photosensitizer MC540, NIR dye IR-820, and poly(acryl amine) PAA-octylamine, where the UCNPs serve as an energy donor while IR-820 serves as an energy acceptor. The nanoparticles are found to sensitively reflect the singlet oxygen levels generated in the tumor tissues during PDT, by luminescence intensity changes of UNCPs at 800 nm emission. Furthermore, it could also enable tumor treatment with satisfactory biocompatibility. To the best knowledge, this is the first report of a theranostic nanoplatform with the ability to formulate the in vivo dose-effect relationship between singlet oxygen and PDT efficacy and to achieve tumor treatment at the same time. This work might also provide an executable strategy to evaluate photodynamic therapeutic efficacy based on singlet oxygen pathway.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yongkuan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Xu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Man Yang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
2
|
Zhang L, Zheng X, Deng W, Lu Y, Lechevallier S, Ye Z, Goldys EM, Dawes JM, Piper JA, Yuan J, Verelst M, Jin D. Practical implementation, characterization and applications of a multi-colour time-gated luminescence microscope. Sci Rep 2014; 4:6597. [PMID: 25307702 PMCID: PMC4194433 DOI: 10.1038/srep06597] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022] Open
Abstract
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y₂O₂S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.
Collapse
Affiliation(s)
- Lixin Zhang
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Xianlin Zheng
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Deng
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Yiqing Lu
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Severine Lechevallier
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CERMES - CNRS), Paul Sabatier University, France
| | - Zhiqiang Ye
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ewa M. Goldys
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Judith M. Dawes
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - James A. Piper
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Marc Verelst
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CERMES - CNRS), Paul Sabatier University, France
| | - Dayong Jin
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|