1
|
Adelhardt P, Koziol JA, Langheld A, Schmidt KP. Monte Carlo Based Techniques for Quantum Magnets with Long-Range Interactions. ENTROPY (BASEL, SWITZERLAND) 2024; 26:401. [PMID: 38785650 PMCID: PMC11120707 DOI: 10.3390/e26050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum-optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here, we give an overview of recent advancements to investigate quantum magnets with long-range interactions focusing on two techniques based on Monte Carlo integration. First, the method of perturbative continuous unitary transformations where classical Monte Carlo integration is applied within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-order series expansions of energies and observables in the thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-size scaling can then be used to determine the physical properties of the infinite system. In recent years, both techniques have been applied successfully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite lattices. Here, we summarise the obtained quantum-critical properties including critical exponents for all these systems in a coherent way. Further, we review how long-range interactions are used to study quantum phase transitions above the upper critical dimension and the scaling techniques to extract these quantum critical properties from the numerical calculations.
Collapse
Affiliation(s)
| | | | | | - Kai P. Schmidt
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; (P.A.); (J.A.K.); (A.L.)
| |
Collapse
|
2
|
Hester G, DeLazzer TN, Yahne DR, Sarkis CL, Zhao HD, Rivera JAR, Calder S, Ross KA. Magnetic properties of the Ising-like rare earth pyrosilicate: D-Er 2Si 2O 7. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:405801. [PMID: 34252896 DOI: 10.1088/1361-648x/ac136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Ising-like spin-1/2 magnetic materials are of interest for their ready connection to theory, particularly in the context of quantum critical behavior. In this work we report detailed studies of the magnetic properties of a member of the rare earth pyrosilicate family, D-Er2Si2O7, which is known to display a highly anisotropic Ising-likeg-tensor and effective spin-1/2 magnetic moments. We used powder neutron diffraction, powder inelastic neutron spectroscopy (INS), and single crystal AC susceptibility to characterize its magnetic properties. Neutron diffraction enabled us to determine the magnetic structure below the known transition temperature (TN= 1.9 K) in zero field, confirming that the magnetic state is a four-sublattice antiferromagnetic structure with two non-collinear Ising axes, as was previously hypothesized. Our powder INS data revealed a gapped excitation at zero field, consistent with anisotropic (possibly Ising) exchange. An applied field of 1 T produces a mode softening, which is consistent with a field-induced second order phase transition. To assess the relevance of D-Er2Si2O7to the transverse field Ising model, we performed AC susceptibility measurements on a single crystal with the magnetic field oriented in the direction transverse to the Ising axes. This revealed a transition at 2.65 T at 0.1 K, a field significantly higher than the mode-softening field observed by powder INS, showing that the field-induced phase transitions are highly field-direction dependent as expected. These measurements suggest that D-Er2Si2O7may be a candidate for further exploration related to the transverse field Ising model.
Collapse
Affiliation(s)
- Gavin Hester
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, United States of America
| | - T N DeLazzer
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, United States of America
| | - D R Yahne
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, United States of America
| | - C L Sarkis
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, United States of America
| | - H D Zhao
- Department of Physics, University of Colorado-Boulder, Boulder, CO 80309, United States of America
| | - J A Rodriguez Rivera
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, United States of America
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20740, United States of America
| | - S Calder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - K A Ross
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, United States of America
- Quantum Materials Program, CIFAR, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
3
|
Using thermal boundary conditions to engineer the quantum state of a bulk magnet. Proc Natl Acad Sci U S A 2014; 111:3689-94. [PMID: 24567389 DOI: 10.1073/pnas.1316070111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The degree of contact between a system and the external environment can alter dramatically its proclivity to quantum mechanical modes of relaxation. We show that controlling the thermal coupling of cubic-centimeter-sized crystals of the Ising magnet LiHo(x)Y(1-x)F4 to a heat bath can be used to tune the system between a glassy state dominated by thermal excitations over energy barriers and a state with the hallmarks of a quantum spin liquid. Application of a magnetic field transverse to the Ising axis introduces both random magnetic fields and quantum fluctuations, which can retard and speed the annealing process, respectively, thereby providing a mechanism for continuous tuning between the destination states. The nonlinear response of the system explicitly demonstrates quantum interference between internal and external relaxation pathways.
Collapse
|
4
|
Andresen JC, Thomas CK, Katzgraber HG, Schechter M. Novel disordering mechanism in ferromagnetic systems with competing interactions. PHYSICAL REVIEW LETTERS 2013; 111:177202. [PMID: 24206516 DOI: 10.1103/physrevlett.111.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Ferromagnetic Ising systems with competing interactions are considered in the presence of a random field. We find that in three space dimensions the ferromagnetic phase is disordered by a random field which is considerably smaller than the typical interaction strength between the spins. This is the result of a novel disordering mechanism triggered by an underlying spin-glass phase. Calculations for the specific case of the long-range dipolar LiHo(x)Y(1-x)F(4) compound suggest that the above mechanism is responsible for the peculiar dependence of the critical temperature on the strength of the random field and the broadening of the susceptibility peaks as temperature is decreased, as found in recent experiments by Silevitch et al.. [Nature (London) 448, 567 (2007)]. Our results thus emphasize the need to go beyond the standard Imry-Ma argument when studying general random-field systems.
Collapse
|