1
|
Kim SE, Yoon JC, Muthurasu A, Kim HY. Functionalized Triangular Carbon Quantum Dot Stabilized Gold Nanoparticles Decorated Boron Nitride Nanosheets Interfaced for Electrochemical Detection of Cardiac Troponin T. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39530172 DOI: 10.1021/acs.langmuir.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fast, and highly sensitive estimation of cardiac troponin T (cTnT) is crucial for the early identification of acute myocardial infarction (AMI). The electrochemical immunoassay-based (EIB) sensors are highly promising for this purpose, as they offer precise measurements and can be directly assessed in intricate matrices, including blood. To increase sensitivity, EIB sensors use nanomaterials or amplification processes, which can be laborious to develop. With this, we develop an electrochemical immunosensor for the sensitive detection of cardiac troponin T (cTnT). The sensing platform is composed of functionalized triangular carbon quantum dots stabilized gold nanoparticles which are integrated with boron nitride nanosheets (caf-TCQDs@AuNPs on HO-BNNS). Ferrocene carboxylic acid (Fc-COOH) serves as the signal label. The composite was developed and examined using several techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), cyclic voltammetry, and chronocoulometry. The caf-TCQDs@AuNPs supported on HO-BNNS, have a large surface area and excellent electrical conductivity, and serve as an effective platform for the immobilization of anti-cTnT monoclonal antibodies via carbodiimide coupling. The Fc-COOH, functioning as a signal label through the oxidation process, was integrated with caf-TCQDs@AuNPs on the HO-BNNS platform to establish an electrochemical immunosensor for the detection of cTnT. The electrochemical immunosensor demonstrated excellent performance for the determination of cTnT under optimal conditions, exhibiting a linearity range spanning from 0.0001 to 100 ng mL-1, accompanied by a low detection limit of 0.0013 ng mL-1. Notably, the immunosensor revealed high specificity, as well as excellent levels of reproducibility and reliability for the examination of human serum samples.
Collapse
Affiliation(s)
- So Eun Kim
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
| | - Jae Chol Yoon
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
| | - Alagan Muthurasu
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Hak Yong Kim
- Department of Nano Convergence Technology, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
2
|
Sahu S, Kumar L, Das S, Gupta D, Anand R. Ultrasensitive detection of aromatic water pollutants through protein immobilization driven organic electrochemical transistors. Chem Sci 2024; 15:710-719. [PMID: 38179533 PMCID: PMC10762727 DOI: 10.1039/d3sc03509c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Xenobiotic aromatic water pollutants pose an extreme threat to environmental sustainability. Due to the lack of detectable functional groups in these compounds and scarcity of selective bio-recognition scaffolds, easy-to-use sensing strategies capable of on-site detection remain unavailable. Herein, to address this lacune, we entail a strategy that combines biosensor scaffolds with organic electronics to create a compact device for environmental aromatic pollution monitoring. As proof of principle, a sensor module capable of rapid, economic, reliable, and ultrasensitive detection of phenol down to 2 ppb (0.02 μM) was designed wherein biosensing protein MopR was coupled with an organic electrochemical transistor (OECT). For effective interfacing of the sensing scaffold MopR, graphene oxide (GO) nanosheets were optimized as a host immobilization matrix. The MopR-GO immobilized sensor module was subsequently substituted as the gate electrode with PEDOT:PSS serving as an organic semiconductor material. The resulting OECT sensor provided a favourable microenvironment for protein activity, maintaining high specificity. Exclusive phenol detection with minimal loss of sensitivity (<5% error) could be achieved in both complex pollutant mixtures and real environmental samples. This fabrication strategy that amalgamates biological biosensors with organic electronics harnesses the potential to achieve detection of a host of emerging pollutants.
Collapse
Affiliation(s)
- Subhankar Sahu
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Lokesh Kumar
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sumita Das
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Dipti Gupta
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
3
|
Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, Raston NHA, Alhoshani A, Jinap S. Electrochemical determination of zearalenone using a label-free competitive aptasensor. Mikrochim Acta 2020; 187:266. [PMID: 32279134 DOI: 10.1007/s00604-020-4218-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
Abstract
An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
Collapse
Affiliation(s)
- Farah Asilah Azri
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Shimaa Eissa
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi, Riyadh, 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi, Riyadh, 11533, Saudi Arabia
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi, Riyadh, 11533, Saudi Arabia
| | - Rashidah Sukor
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11533, Saudi Arabia
| | - Selamat Jinap
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia. .,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Saengdee P, Promptmas C, Zeng T, Leimkühler S, Wollenberger U. Third-generation Sulfite Biosensor Based on Sulfite Oxidase Immobilized on Aminopropyltriethoxysilane Modified Indium Tin Oxide. ELECTROANAL 2016. [DOI: 10.1002/elan.201600566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pawasuth Saengdee
- Faculty of Medical Technology; Mahidol University; Phuttamonthonsai 4, Salaya Nakorn-Prathom 73170 Thailand
| | - Chamras Promptmas
- Faculty of Engineering; Mahidol University; Phuttamonthonsai 4, Salaya Nakorn-Prathom 73170 Thailand
| | - Ting Zeng
- Institute of Biochemistry and Biology; University of Potsdam; Karl-Liebknecht Strasse 24-25 14476 Potsdam-Golm Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology; University of Potsdam; Karl-Liebknecht Strasse 24-25 14476 Potsdam-Golm Germany
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology; University of Potsdam; Karl-Liebknecht Strasse 24-25 14476 Potsdam-Golm Germany
| |
Collapse
|
6
|
Campbell AS, Dong C, Maloney A, Hardinger J, Hu X, Meng F, Guiseppe-Elie A, Wu N, Dinu CZ. A Systematic Study of the Catalytic Behavior at Enzyme–Metal-Oxide Nanointerfaces. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984414500056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metal-oxide nanoparticles with high surface area, controllable functionality and thermal and mechanical stability provide high affinity for enzymes when the next generation of biosensor applications are being considered. We report on the synthesis of metal-oxide-based nanoparticles (with different physical and chemical properties) using hydrothermal processing, photo-deposition and silane functionalization. Physical and chemical properties of the user-synthesized nanoparticles were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Raman scattering, respectively. Thus, characterized metal-oxide-based nanoparticles served as nanosupports for the immobilization of soybean peroxidase enzyme (a model enzyme) through physical binding. The enzyme–nanosupport interface was evaluated to assess the optimum nanosupport characteristics that preserve enzyme functionality and its catalytic behavior. Our results showed that both the nanosupport geometry and its charge influence the functionality and catalytic behavior of the bio-metal-oxide hybrid system.
Collapse
Affiliation(s)
- Alan S. Campbell
- Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA
| | - Chenbo Dong
- Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA
| | - Andrew Maloney
- Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA
| | - Jeremy Hardinger
- Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA
| | - Xiao Hu
- Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA
| | - Fanke Meng
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Anthony Guiseppe-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Clemson University Advanced Materials Center, 100 Technology Drive, Anderson, South Carolina 29625, USA
| | - Nianqiang Wu
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA
| |
Collapse
|