1
|
Sahle CJ, Rosa AD, Rossi M, Cerantola V, Spiekermann G, Petitgirard S, Jacobs J, Huotari S, Moretti Sala M, Mirone A. Direct tomography imaging for inelastic X-ray scattering experiments at high pressure. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:269-275. [PMID: 28009566 DOI: 10.1107/s1600577516017100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
A method to separate the non-resonant inelastic X-ray scattering signal of a micro-metric sample contained inside a diamond anvil cell (DAC) from the signal originating from the high-pressure sample environment is described. Especially for high-pressure experiments, the parasitic signal originating from the diamond anvils, the gasket and/or the pressure medium can easily obscure the sample signal or even render the experiment impossible. Another severe complication for high-pressure non-resonant inelastic X-ray measurements, such as X-ray Raman scattering spectroscopy, can be the proximity of the desired sample edge energy to an absorption edge energy of elements constituting the DAC. It is shown that recording the scattered signal in a spatially resolved manner allows these problems to be overcome by separating the sample signal from the spurious scattering of the DAC without constraints on the solid angle of detection. Furthermore, simple machine learning algorithms facilitate finding the corresponding detector pixels that record the sample signal. The outlined experimental technique and data analysis approach are demonstrated by presenting spectra of the Si L2,3-edge and O K-edge of compressed α-quartz. The spectra are of unprecedented quality and both the O K-edge and the Si L2,3-edge clearly show the existence of a pressure-induced phase transition between 10 and 24 GPa.
Collapse
Affiliation(s)
- Ch J Sahle
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - A D Rosa
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M Rossi
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V Cerantola
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - G Spiekermann
- Institute of Earth and Environmental Science, Universität Potsdam, Potsdam, Germany
| | - S Petitgirard
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - J Jacobs
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - S Huotari
- Department of Physics, POB 64, FI-00014, University of Helsinki, Helsinki, Finland
| | - M Moretti Sala
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - A Mirone
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
2
|
Sahle CJ, Mirone A, Niskanen J, Inkinen J, Krisch M, Huotari S. Planning, performing and analyzing X-ray Raman scattering experiments. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:400-409. [PMID: 25723942 PMCID: PMC4786055 DOI: 10.1107/s1600577514027581] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/17/2014] [Indexed: 06/01/2023]
Abstract
A compilation of procedures for planning and performing X-ray Raman scattering (XRS) experiments and analyzing data obtained from them is presented. In particular, it is demonstrated how to predict the overall shape of the spectra, estimate detection limits for dilute samples, and how to normalize the recorded spectra to absolute units. In addition, methods for processing data from multiple-crystal XRS spectrometers with imaging capability are presented, including a super-resolution method that can be used for direct tomography using XRS spectra as the contrast. An open-source software package with these procedures implemented is also made available.
Collapse
Affiliation(s)
- Ch. J. Sahle
- Department of Physics, PO Box 64, FI-00014 University of Helsinki, Helsinki, Finland
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - A. Mirone
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - J. Niskanen
- Department of Physics, PO Box 64, FI-00014 University of Helsinki, Helsinki, Finland
| | - J. Inkinen
- Department of Physics, PO Box 64, FI-00014 University of Helsinki, Helsinki, Finland
| | - M. Krisch
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - S. Huotari
- Department of Physics, PO Box 64, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|