1
|
Takeuchi A, Suzuki Y. Recent progress in synchrotron radiation 3D-4D nano-imaging based on X-ray full-field microscopy. ACTA ACUST UNITED AC 2020; 69:259-279. [PMID: 32373929 DOI: 10.1093/jmicro/dfaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 11/14/2022]
Abstract
The advent of high-flux, high-brilliance synchrotron radiation (SR) has prompted the development of high-resolution X-ray imaging techniques such as full-field microscopy, holography, coherent diffraction imaging and ptychography. These techniques have strong potential to establish non-destructive three- and four-dimensional nano-imaging when combined with computed tomography (CT), called nano-tomography (nano-CT). X-ray nano-CTs based on full-field microscopy are now routinely available and widely used. Here we discuss the current status and some applications of nano-CT using a Fresnel zone plate as an objective. Optical properties of full-field microscopy, such as spatial resolution and off-axis aberration, which determine the effective field of view, are also discussed, especially in relation to 3D tomographic imaging.
Collapse
Affiliation(s)
- Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Yoshio Suzuki
- Graduate School of Frontier Science, University of Tokyo, Kasiwa, Chiba 277-8561, Japan
| |
Collapse
|
2
|
Takao S, Sekizawa O, Higashi K, Samjeské G, Kaneko T, Sakata T, Yamamoto T, Uruga T, Iwasawa Y. Visualization Analysis of Pt and Co Species in Degraded Pt 3Co/C Electrocatalyst Layers of a Polymer Electrolyte Fuel Cell Using a Same-View Nano-XAFS/STEM-EDS Combination Technique. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2299-2312. [PMID: 31841306 DOI: 10.1021/acsami.9b16393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In order to obtain a suitable design policy for the development of a next-generation polymer electrolyte fuel cell, we performed a visualization analysis of Pt and Co species following aging and degradation processes in membrane-electrode assembly (MEA), using a same-view. Nano-X-ray absorption fine structure (XAFS)/Scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS) technique that we developed to elucidate durability factors and degradation mechanisms of a MEA Pt3Co/C cathode electrocatalyst with higher activity and durability than a MEA Pt/C. In the MEA Pt3Co/C, after 5000 ADT-rec (rectangle accelerated durability test) cycles, unlike the MEA Pt/C, there was no oxidation of Pt. In contrast, Co oxidized and dissolved over a wide range of the cathode layer (∼70% of the initial Co amount). The larger the size of the cracks and pores in the MEA Pt/C and the smaller the ratio of Pt/ionomer of cracks and pores, the faster the rate of catalyst degradation. In contrast, there was no correlation between the size or Co/ionomer ratio of the cracks and pores and the Co dissolution of the MEA Pt3Co/C. It was shown that Co dissolved in the electrolyte region had an octahedral Co2+-O6 structure, based on a 150 nm × 150 nm nano-XAFS analysis. It was also shown that its existence suppressed the oxidation and dissolution of Pt. The MEA Pt3Co/C after 10,000 ADT-rec cycles had many cracks and pores in the cathode electrocatalyst layer, and about 90% of Co had been dissolved and removed from the cathode layer. We discovered a metallic Pt-Co alloy band in the electrolyte region of 300-400 nm from the cathode edge and square planar Pt2+-O4 species and octahedral Co2+-O6 species in the area between the cathode edge and the Pt-Co band. The transition of Pt and Co chemical species in the Pt3Co/C cathode electrocatalyst in the MEA during the degradation process, as well as a fuel cell deterioration suppression process by Co were visualized for the first time at the nano scale using the same-view nano-XAFS/STEM-EDS combination technique that can measure the MEA under a humid N2 atmosphere while maintaining the working environment for a fuel cell.
Collapse
Affiliation(s)
- Shinobu Takao
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Oki Sekizawa
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
- Japan Synchrotron Radiation Research Institute , Spring-8 , Sayo , Hyogo 679-5198 , Japan
| | - Kotaro Higashi
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Gabor Samjeské
- Department of Chemistry, Graduate School of Science , Nagoya University , Chikusa, Nagoya , Aichi 464-8602 , Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Tomohiro Sakata
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Takashi Yamamoto
- Department of Mathematical and Material Sciences, Faculty of Integrated Arts and Sciences , The University of Tokushima , Minamijosanjima, Tokushima 770-8502 , Japan
| | - Tomoya Uruga
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
- Japan Synchrotron Radiation Research Institute , Spring-8 , Sayo , Hyogo 679-5198 , Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
- Department of Engineering Science, Graduate School of Informatics and Engineering , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| |
Collapse
|
3
|
Uruga T, Tada M, Sekizawa O, Takagi Y, Yokoyama T, Iwasawa Y. SPring-8 BL36XU: Synchrotron Radiation X-Ray-Based Multi-Analytical Beamline for Polymer Electrolyte Fuel Cells under Operating Conditions. CHEM REC 2019; 19:1444-1456. [PMID: 30908882 DOI: 10.1002/tcr.201800193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/02/2019] [Indexed: 01/08/2023]
Abstract
We designed and constructed a beamline BL36XU at the 8 GeV synchrotron radiation facility SPring-8 to provide information required for the development of next-generation polymer electrolyte fuel cells (PEFCs) by clarifying the dynamic aspects of structures and electronic states of cathode catalysts under PEFC operating conditions and in the deterioration processes by accelerated durability test protcols. To investigate the mechanism and degradation process for the cathode electrocatalysis in practical PEFCs, we developed advanced time- and spatially-resolved in-situ/operando X-ray absorption fine structure measurement systems and complementary analytical systems (X-ray emission spectroscopy (XES), X-ray diffraction (XRD), X-ray computer tomography (CT) and hard X-ray photoelectron spectroscopy (HAXPES)) and combined them to develop multi-analytical systems at BL36XU. Multi-analytical systems are very powerful for observing spatial-temporal features of the transient processes occurring in complex systems such as PEFCs. This account describes the design, performance, and research results of the BL36XU and multi-analytical in-situ/operando systems.
Collapse
Affiliation(s)
- Tomoya Uruga
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan.,Japan Synchrotron Radiation Research Institute, Koto, Sayo, Hyogo, 679-5198, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science & Research Center for Materials Science & Integrated Research Consortium on Chemical Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan.,RIKEN SPring-8 Center Koto, Sayo, Hyogo, 679-5198, Japan
| | - Oki Sekizawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan.,Japan Synchrotron Radiation Research Institute, Koto, Sayo, Hyogo, 679-5198, Japan
| | - Yasumasa Takagi
- Japan Synchrotron Radiation Research Institute, Koto, Sayo, Hyogo, 679-5198, Japan.,Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Toshihiko Yokoyama
- Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
4
|
Matsui H, Maejima N, Ishiguro N, Tan Y, Uruga T, Sekizawa O, Sakata T, Tada M. Operando XAFS Imaging of Distribution of Pt Cathode Catalysts in PEFC MEA. CHEM REC 2018; 19:1380-1392. [PMID: 30375154 DOI: 10.1002/tcr.201800123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/28/2018] [Indexed: 11/10/2022]
Abstract
Three-dimensional imaging using X-ray as a probe is state-of-the-art for the characterization of heterogeneous materials. In addition to simple imaging of sample morphology, imaging of elemental distribution and chemical states provides advanced maps of key structural parameters of functional materials. The combination of X-ray absorption fine structure (XAFS) spectroscopy and three-dimensional imaging such as computed tomography (CT) can visualize the three-dimensional distribution of target elements, their valence states, and local structures in a non-destructive manner. In this personal account, our recent results on the three-dimensional XAFS imaging for Pt cathode catalysts in the membrane electrode assembly (MEA) of polymer electrolyte fuel cell (PEFC) are introduced. The distribution and chemical states of Pt cathode catalysts in MEAs remarkably change under PEFC operating conditions, and the 3D XAFS imaging revealed essential events in PEFC MEAs.
Collapse
Affiliation(s)
- Hirosuke Matsui
- Department of Chemistry, Graduate School of Science & Research Center for Materials Science & Integrated Research Consortium on Chemical Science, Nagoya University Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan.,RIKEN SPring-8 Center Koto, Sayo Hyogo, 679-5198, Japan
| | - Naoyuki Maejima
- Department of Chemistry, Graduate School of Science & Research Center for Materials Science & Integrated Research Consortium on Chemical Science, Nagoya University Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | | | - Yuanyuan Tan
- Department of Chemistry, Graduate School of Science & Research Center for Materials Science & Integrated Research Consortium on Chemical Science, Nagoya University Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Tomoya Uruga
- Innovation Research Center for Fuel Cells, The University of Electro-Communications Chofu, Tokyo, 182-8585, Japan.,Japan Synchrotron Radiation Research Center, SPring-8 Koto, Sayo, Hyogo, 679-5198, Japan
| | - Oki Sekizawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications Chofu, Tokyo, 182-8585, Japan.,Japan Synchrotron Radiation Research Center, SPring-8 Koto, Sayo, Hyogo, 679-5198, Japan
| | - Tomohiro Sakata
- Innovation Research Center for Fuel Cells, The University of Electro-Communications Chofu, Tokyo, 182-8585, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science & Research Center for Materials Science & Integrated Research Consortium on Chemical Science, Nagoya University Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan.,RIKEN SPring-8 Center Koto, Sayo Hyogo, 679-5198, Japan
| |
Collapse
|