1
|
Daghrery A, Ferreira JA, de Souza Araújo IJ, Clarkson BH, Eckert GJ, Bhaduri SB, Malda J, Bottino MC. A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration. Adv Healthc Mater 2021; 10:e2101152. [PMID: 34342173 PMCID: PMC8568633 DOI: 10.1002/adhm.202101152] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Indexed: 11/09/2022]
Abstract
Periodontitis is a chronic inflammatory, bacteria-triggered disorder affecting nearly half of American adults. Although some level of tissue regeneration is realized, its low success in complex cases demands superior strategies to amplify regenerative capacity. Herein, highly ordered scaffolds are engineered via Melt ElectroWriting (MEW), and the effects of strand spacing, as well as the presence of a nanostructured fluorinated calcium phosphate (F/CaP) coating on the adhesion/proliferation, and osteogenic differentiation of human-derived periodontal ligament stem cells, are investigated. Upon initial cell-scaffold interaction screening aimed at defining the most suitable design, MEW poly(ε-caprolactone) scaffolds with 500 µm strand spacing are chosen. Following an alkali treatment, scaffolds are immersed in a pre-established solution to allow for coating formation. The presence of a nanostructured F/CaP coating leads to a marked upregulation of osteogenic genes and attenuated bacterial growth. In vivo findings confirm that the F/CaP-coated scaffolds are biocompatible and lead to periodontal regeneration when implanted in a rat mandibular periodontal fenestration defect model. In aggregate, it is considered that this work can contribute to the development of personalized scaffolds capable of enabling tissue-specific differentiation of progenitor cells, and thus guide simultaneous and coordinated regeneration of soft and hard periodontal tissues, while providing antimicrobial protection.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Isaac J de Souza Araújo
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian H Clarkson
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - George J Eckert
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, 43606, USA
- EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, VA, 22314, USA
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Yu L, Silva Santisteban TM, Liu Q, Hu C, Bi J, Wei M. Effect of three-dimensional porosity gradients of biomimetic coatings on their bonding strength and cell behavior. J Biomed Mater Res A 2020; 109:615-626. [PMID: 32608169 DOI: 10.1002/jbm.a.37046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/19/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Surface modification techniques are often used to enhance the properties of Ti-based materials as hard-tissue replacements. While the microstructure of the coating and the quality of the interface between the substrate and coating are essential to evaluate the reliability and applicability of the surface modification. In this study, both a hydroxyapatite (HA) coating and a collagen-hydroxyapatite (Col-HA) composite coating were deposited onto a Ti-6Al-4V substrate using a biomimetic coating process. Importantly, a gradient cross-sectional structure with a porous coating toward the surface, while a dense layer adjacent to the interface between the coating and substrate was observed in three-dimensional (3D) from both the HA and Col-HA coatings via a dual-beam focused ion beam-scanning electron microscope (FIB-SEM). Moreover, the pore distributions within the entire coatings were reconstructed in 3D using Avizo, and the pores size distributions along the coating depth were calculated using RStudio. By evaluating the mechanical property and biocompatibility of these materials and closely observing the cross-sectional cell-coating-substrate interfaces using FIB-SEM, it was revealed that the porous surface created by both coatings well supports osteoblast cell adhesion while the dense inner layer facilitates a good bonding between the coating and the substrate. Although the mechanical property of the coating decreased with the addition of collagen, it is still strong enough for implant handling and the biocompatibility was promoted.
Collapse
Affiliation(s)
- Le Yu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio, USA
| | | | - Qinqing Liu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Changmin Hu
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mei Wei
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA.,Department of Mechanical Engineering, Ohio University, Athens, Ohio, USA
| |
Collapse
|