1
|
Hollenbeck AC, Beachy AJ, Grandhi RV, Pankonien AM. Data-Driven Sparse Sensor Placement Optimization on Wings for Flight-By-Feel: Bioinspired Approach and Application. Biomimetics (Basel) 2024; 9:631. [PMID: 39451837 PMCID: PMC11505690 DOI: 10.3390/biomimetics9100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Flight-by-feel (FBF) is an approach to flight control that uses dispersed sensors on the wings of aircraft to detect flight state. While biological FBF systems, such as the wings of insects, often contain hundreds of strain and flow sensors, artificial systems are highly constrained by size, weight, and power (SWaP) considerations, especially for small aircraft. An optimization approach is needed to determine how many sensors are required and where they should be placed on the wing. Airflow fields can be highly nonlinear, and many local minima exist for sensor placement, meaning conventional optimization techniques are unreliable for this application. The Sparse Sensor Placement Optimization for Prediction (SSPOP) algorithm extracts information from a dense array of flow data using singular value decomposition and linear discriminant analysis, thereby identifying the most information-rich sparse subset of sensor locations. In this research, the SSPOP algorithm is evaluated for the placement of artificial hair sensors on a 3D delta wing model with a 45° sweep angle and a blunt leading edge. The sensor placement solution, or design point (DP), is shown to rank within the top one percent of all possible solutions by root mean square error in angle of attack prediction. This research is the first to evaluate SSPOP on a 3D model and the first to include variable length hairs for variable velocity sensitivity. A comparison of SSPOP against conventional greedy search and gradient-based optimization shows that SSPOP DP ranks nearest to optimal in over 90 percent of models and is far more robust to model variation. The successful application of SSPOP in complex 3D flows paves the way for experimental sensor placement optimization for artificial hair-cell airflow sensors and is a major step toward biomimetic flight-by-feel.
Collapse
|
2
|
Seale M, Cummins C, Viola IM, Mastropaolo E, Nakayama N. Design principles of hair-like structures as biological machines. J R Soc Interface 2018; 15:20180206. [PMID: 29848593 PMCID: PMC6000178 DOI: 10.1098/rsif.2018.0206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/08/2018] [Indexed: 12/02/2022] Open
Abstract
Hair-like structures are prevalent throughout biology and frequently act to sense or alter interactions with an organism's environment. The overall shape of a hair is simple: a long, filamentous object that protrudes from the surface of an organism. This basic design, however, can confer a wide range of functions, owing largely to the flexibility and large surface area that it usually possesses. From this simple structural basis, small changes in geometry, such as diameter, curvature and inter-hair spacing, can have considerable effects on mechanical properties, allowing functions such as mechanosensing, attachment, movement and protection. Here, we explore how passive features of hair-like structures, both individually and within arrays, enable diverse functions across biology. Understanding the relationships between form and function can provide biologists with an appreciation for the constraints and possibilities on hair-like structures. Additionally, such structures have already been used in biomimetic engineering with applications in sensing, water capture and adhesion. By examining hairs as a functional mechanical unit, geometry and arrangement can be rationally designed to generate new engineering devices and ideas.
Collapse
Affiliation(s)
- Madeleine Seale
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, UK
- SynthSys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Cathal Cummins
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- SynthSys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
- School of Engineering, Institute for Energy Systems, University of Edinburgh, Edinburgh, UK
| | - Ignazio Maria Viola
- School of Engineering, Institute for Energy Systems, University of Edinburgh, Edinburgh, UK
| | - Enrico Mastropaolo
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, UK
| | - Naomi Nakayama
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- SynthSys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
- Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Buoso S, Dickinson BT, Palacios R. Bat-inspired integrally actuated membrane wings with leading-edge sensing. BIOINSPIRATION & BIOMIMETICS 2017; 13:016013. [PMID: 29283112 DOI: 10.1088/1748-3190/aa9a7b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents a numerical investigation on the closed-loop performance of a two-dimensional actuated membrane wing with fixed supports. The proposed concept mimics aerodynamic sensing and actuation mechanisms found in bat wings to achieve robust outdoor flight: firstly, variable membrane tension, which is obtained in bats through skeleton articulation, is introduced through a dielectric-elastomer construction; secondly, leading-edge airflow sensing is achieved with bioinspired hair-like sensors. Numerical results from a coupled aero-electromechanical model show that this configuration can allow for the tracking of prescribed lift coefficient signals in the presence of disturbances from atmospheric gusts. In particular, disturbance measurements through the hair sensor (a feedforward control strategy) are seen to provide substantial advantage with respect to a reactive (feedback) control strategy determining a reduction of the oscillations of the lift coefficient.
Collapse
Affiliation(s)
- Stefano Buoso
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Sterbing SJ, Moss CF. Comparative analysis of the distribution and morphology of tactile hairs on the wing membrane of four bat species. J Mammal 2017. [DOI: 10.1093/jmammal/gyx146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
Chin DD, Matloff LY, Stowers AK, Tucci ER, Lentink D. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates. J R Soc Interface 2017; 14:20170240. [PMID: 28592663 PMCID: PMC5493806 DOI: 10.1098/rsif.2017.0240] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022] Open
Abstract
Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo.
Collapse
Affiliation(s)
- Diana D Chin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Laura Y Matloff
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Amanda Kay Stowers
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Emily R Tucci
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Sterbing-D'Angelo SJ, Chadha M, Marshall KL, Moss CF. Functional role of airflow-sensing hairs on the bat wing. J Neurophysiol 2016; 117:705-712. [PMID: 27852729 DOI: 10.1152/jn.00261.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/15/2016] [Indexed: 11/22/2022] Open
Abstract
The wing membrane of the big brown bat (Eptesicus fuscus) is covered by a sparse grid of microscopic hairs. We showed previously that various tactile receptors (e.g., lanceolate endings and Merkel cell neurite complexes) are associated with wing-hair follicles. Furthermore, we found that depilation of these hairs decreased the maneuverability of bats in flight. In the present study, we investigated whether somatosensory signals arising from the hairs carry information about airflow parameters. Neural responses to calibrated air puffs on the wing were recorded from primary somatosensory cortex of E. fuscus Single units showed sparse, phasic, and consistently timed spikes that were insensitive to air-puff duration and magnitude. The neurons discriminated airflow from different directions, and a majority responded with highest firing rates to reverse airflow from the trailing toward the leading edge of the dorsal wing. Reverse airflow, caused by vortices, occurs commonly in slowly flying bats. Hence, the present findings suggest that cortical neurons are specialized to monitor reverse airflow, indicating laminar airflow disruption (vorticity) that potentially destabilizes flight and leads to stall. NEW & NOTEWORTHY Bat wings are adaptive airfoils that enable demanding flight maneuvers. The bat wing is sparsely covered with sensory hairs, and wing-hair removal results in reduced flight maneuverability. Here, we report for the first time single-neuron responses recorded from primary somatosensory cortex to airflow stimulation that varied in amplitude, duration, and direction. The neurons show high sensitivity to the directionality of airflow and might act as stall detectors.
Collapse
Affiliation(s)
- S J Sterbing-D'Angelo
- Institute for Systems Research, University of Maryland, College Park, Maryland; .,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland; and
| | - M Chadha
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland.,Department of Psychology, University of Maryland, College Park, Maryland.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland; and
| | - K L Marshall
- Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - C F Moss
- Institute for Systems Research, University of Maryland, College Park, Maryland.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland.,Department of Psychology, University of Maryland, College Park, Maryland.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland; and
| |
Collapse
|
7
|
Abstract
Bats are diverse, speciose, and inhabit most of earth’s habitats, aided by powered flapping flight. The many traits that enable flight in these mammals have long attracted popular and research interest, but recent technological and conceptual advances have provided investigators with new kinds of information concerning diverse aspects of flight biology. As a consequence of these new data, our understanding of how bats fly has begun to undergo fundamental changes. Physical and neural science approaches are now beginning to inform understanding of structural architecture of wings. High-speed videography is dramatically expanding documentation of how bats fly. Experimental fluid dynamics and innovative physiological techniques profoundly influence how we interpret the ways bats produce aerodynamic forces as they execute distinctive flight behaviors and the mechanisms that underlie flight energetics. Here, we review how recent bat flight research has provided significant new insights into several important aspects of bat flight structure and function. We suggest that information coming from novel approaches offer opportunities to interconnect studies of wing structure, aerodynamics, and physiology more effectively, and to connect flight biology to newly emerging studies of bat evolution and ecology.
Collapse
Affiliation(s)
- S.M. Swartz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - N. Konow
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Marshall KL, Chadha M, deSouza LA, Sterbing-D'Angelo SJ, Moss CF, Lumpkin EA. Somatosensory substrates of flight control in bats. Cell Rep 2015; 11:851-858. [PMID: 25937277 DOI: 10.1016/j.celrep.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/11/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022] Open
Abstract
Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.
Collapse
Affiliation(s)
- Kara L Marshall
- Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Mohit Chadha
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Laura A deSouza
- Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | | - Cynthia F Moss
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| | - Ellen A Lumpkin
- Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Microsphere-assisted fabrication of high aspect-ratio elastomeric micropillars and waveguides. Nat Commun 2015; 5:3324. [PMID: 24525627 DOI: 10.1038/ncomms4324] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/27/2014] [Indexed: 11/08/2022] Open
Abstract
High aspect-ratio micropillars are in strong demand for microtechnology, but their realization remains a difficult challenge, especially when attempted with soft materials. Here we present a direct drawing-based technique for fabricating micropillars with poly(dimethylsiloxane). Despite the material's extreme softness, our technique enables routine realization of micropillars exceeding 2,000 μm in height and 100 in aspect-ratio. It also supports in situ integration of microspheres at the tips of the micropillars. As a validation of the new structure's utility, we configure it into airflow sensors, in which the micropillars and microspheres function as flexible upright waveguides and self-aligned reflectors, respectively. High-level bending of the micropillar under an airflow and its optical read-out enables mm s(-1) scale-sensing resolution. This new scheme, which uniquely integrates high aspect-ratio elastomeric micropillars and microspheres self-aligned to them, could widen the scope of soft material-based microdevice technology.
Collapse
|
10
|
Antipov YA. Nonlinear bending models for beams and plates. Proc Math Phys Eng Sci 2014; 470:20140064. [PMID: 25294960 DOI: 10.1098/rspa.2014.0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/23/2014] [Indexed: 11/12/2022] Open
Abstract
A new nonlinear model for large deflections of a beam is proposed. It comprises the Euler-Bernoulli boundary value problem for the deflection and a nonlinear integral condition. When bending does not alter the beam length, this condition guarantees that the deflected beam has the original length and fixes the horizontal displacement of the free end. The numerical results are in good agreement with the ones provided by the elastica model. Dynamic and two-dimensional generalizations of this nonlinear one-dimensional static model are also discussed. The model problem for an inextensible rectangular Kirchhoff plate, when one side is clamped, the opposite one is subjected to a shear force, and the others are free of moments and forces, is reduced to a singular integral equation with two fixed singularities. The singularities of the unknown function are examined, and a series-form solution is derived by the collocation method in terms of the associated Jacobi polynomials. The procedure requires solving an infinite system of linear algebraic equations for the expansion coefficients subject to the inextensibility condition.
Collapse
Affiliation(s)
- Y A Antipov
- Department of Mathematics , Louisiana State University , Baton Rouge, LA 70803, USA
| |
Collapse
|