Sullivan T, O’Callaghan I. Recent Developments in Biomimetic Antifouling Materials: A Review.
Biomimetics (Basel) 2020;
5:E58. [PMID:
33143169 PMCID:
PMC7709699 DOI:
10.3390/biomimetics5040058]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
The term 'biomimetic' might be applied to any material or process that in some way reproduces, mimics, or is otherwise inspired by nature. Also variously termed bionic, bioinspired, biological design, or even green design, the idea of adapting or taking inspiration from a natural solution to solve a modern engineering problem has been of scientific interest since it was first proposed in the 1960s. Since then, the concept that natural materials and nature can provide inspiration for incredible breakthroughs and developments in terms of new technologies and entirely new approaches to solving technological problems has become widely accepted. This is very much evident in the fields of materials science, surface science, and coatings. In this review, we survey recent developments (primarily those within the last decade) in biomimetic approaches to antifouling, self-cleaning, or anti-biofilm technologies. We find that this field continues to mature, and emerging novel, biomimetic technologies are present at multiple stages in the development pipeline, with some becoming commercially available. However, we also note that the rate of commercialization of these technologies appears slow compared to the significant research output within the field.
Collapse