1
|
Du R, Bao T, Kong D, Zhang Q, Jia X. Cyclodextrins-Based Polyrotaxanes: From Functional Polymers to Applications in Electronics and Energy Storage Materials. Chempluschem 2024; 89:e202300706. [PMID: 38567455 DOI: 10.1002/cplu.202300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The concept of polyrotaxane comes from the rotaxane structure in the supramolecular field. It is a mechanically interlocked supramolecular assembly composed of linear polymer chains and cyclic molecules. Over recent decades, the synthesis and application of polyrotaxanes have seen remarkable growth. Particularly, cyclodextrin-based polyrotaxanes have been extensively reported due to the low-price raw materials, good biocompatibility, and ease of modification. Hence, it is also one of the most promising mechanically interlocking supramolecules for wide industrialization in the future. Polyrotaxanes are widely introduced into materials such as elastomers, hydrogels, and engineering polymers to improve their mechanical properties or impart functionality to the materials. In these materials, polyrotaxane acts as a slidable cross-linker to dissipate energy through sliding or assist in dispersing stress concentration in the cross-linked network, thereby enhancing the toughness of the materials. Further, the unique sliding-ring effect of cyclodextrin-based polyrotaxanes has pioneered advancements in stretchable electronics and energy storage materials. This includes their innovative use in stretchable conductive composite and binders for anodes, addressing critical challenges in these fields. In this mini-review, our focus is to highlight the current progress and potential wider applications in the future, underlining their transformative impact across various domains of material science.
Collapse
Affiliation(s)
- Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Tianwei Bao
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Deshuo Kong
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
2
|
Bele A, Dascalu M, Tugui C, Farcas A. Silicone elastomers with improved electro-mechanical performance using slide-ring polymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Hu P, Albuquerque FB, Madsen J, Skov AL. Highly stretchable silicone elastomer applied in soft actuators. Macromol Rapid Commun 2022; 43:e2100732. [PMID: 35083804 DOI: 10.1002/marc.202100732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Indexed: 11/11/2022]
Abstract
In this work, a highly stretchable silicone elastomer is incorporated into dielectric elastomer actuators (DEAs) in order to decrease operation voltages by applying high prestretches. Results show that the fabricated DEAs (5-mm-diameter circle active region) can be actuated to a lateral strain of 30% at 4.3 kV for a 122 μm-thick prestretched film, and to a lateral strain of 2.5% at only 250 V for a 6.9 μm-thick prestretched film. Due to the significant viscous component of the silicone elastomer, the DEAs respond more slowly (2-14 s to reach 90% of full strain) and show greater strain changes over time compared to conventional silicone-based DEAs. While this inherent viscosity is not universally favorable, it can be advantageous in applications where actuator damping is desirable. The studied DEAs' mean lifetimes under DC actuation range significantly-from 0.9 h to more than 123.0 h-depending mainly on initial electrical fields (17.8-36.3 V/μm). For instance, DEAs with a 150 μm initial thickness and a prestretch ratio of 3 show 1.4-2.6% lateral strains for the mean lifetime (123.0 h) at only 300 V. Given the strains achieved at low voltage, such DEAs show promise for applications that do not require fast response speeds. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pengpeng Hu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Fabio Beco Albuquerque
- Soft Transducers Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Jeppe Madsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Anne Ladegaard Skov
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|