1
|
Nichols TR. Neuromechanical Circuits of the Spinal Motor Apparatus. Compr Physiol 2024; 14:5789-5838. [PMID: 39699088 DOI: 10.1002/cphy.c240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances. These pathways include both monosynaptic and polysynaptic components. Autogenic, monosynaptic pathways serve to control the spring-like properties of muscles preserving the nonlinear relationship between stiffness and force. Intermuscular monosynaptic pathways compensate for inertial disparities between the inertial properties of limb segments and help to control inertial coupling between joints and axes of rotation. Reciprocal inhibition controls joint stiffness in conjunction with feedforward cocontraction commands. Excitatory force feedback becomes operational during locomotion and increases muscular stiffness to accommodate the higher inertial loads. Inhibitory force feedback is widely distributed among muscles. It is integrated with excitatory pathways from muscle spindles and Golgi tendon organs to determine limb stiffness and interjoint coordination during interactions with the environment. The intermuscular distribution of force feedback is variable and serves to modulate limb stiffness to meet the physical demands of different motor tasks. © 2024 American Physiological Society. Compr Physiol 14:5789-5838, 2024.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
He S, Dai J, Wan D, Sun S, Yang X, Xia X, Zi Y. Biomimetic bimodal haptic perception using triboelectric effect. SCIENCE ADVANCES 2024; 10:eado6793. [PMID: 38968360 PMCID: PMC11225791 DOI: 10.1126/sciadv.ado6793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
Multimodal haptic perception is essential for enhancing perceptual experiences in augmented reality applications. To date, several artificial tactile interfaces have been developed to perceive pressure and precontact signals, while simultaneously detecting object type and softness with quantified modulus still remains challenging. Here, inspired by the campaniform sensilla on insect antennae, we proposed a hemispherical bimodal intelligent tactile sensor (BITS) array using the triboelectric effect. The system is capable of softness identification, modulus quantification, and material type recognition. In principle, due to the varied deformability of materials, the BITS generates unique triboelectric output fingerprints when in contact with the tested object. Furthermore, owing to the different electron affinities, the BITS array can accurately recognize material type (99.4% accuracy), facilitating softness recognition (100% accuracy) and modulus quantification. It is promising that the BITS based on the triboelectric effect has the potential to be miniaturized to provide real-time accurate haptic information as an artificial antenna toward applications of human-machine integration.
Collapse
Affiliation(s)
- Shaoshuai He
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China
| | - Jinhong Dai
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China
| | - Dong Wan
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China
| | - Shengshu Sun
- Medical School, Chinese PLA, Fuxing Road 28, Beijing 100853, China
| | - Xiya Yang
- Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xin Xia
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China
| | - Yunlong Zi
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518057, Guangdong, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou 511400, Guangdong, China
| |
Collapse
|
3
|
Dinges GF, Zyhowski WP, Lucci A, Friend J, Szczecinski NS. Mechanical modeling of mechanosensitive insect strain sensors as a tool to investigate exoskeletal interfaces. BIOINSPIRATION & BIOMIMETICS 2024; 19:026012. [PMID: 38211340 DOI: 10.1088/1748-3190/ad1db9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
During walking, sensory information is measured and monitored by sensory organs that can be found on and within various limb segments. Strain can be monitored by insect load sensors, campaniform sensilla (CS), which have components embedded within the exoskeleton. CS vary in eccentricity, size, and orientation, which can affect their sensitivity to specific strains. Directly investigating the mechanical interfaces that these sensors utilize to encode changes in load bears various obstacles, such as modeling of viscoelastic properties. To circumvent the difficulties of modeling and performing biological experiments in small insects, we developed 3-dimensional printed resin models based on high-resolution imaging of CS. Through the utilization of strain gauges and a motorized tensile tester, physiologically plausible strain can be mimicked while investigating the compression and tension forces that CS experience; here, this was performed for a field of femoral CS inDrosophila melanogaster. Different loading scenarios differentially affected CS compression and the likely neuronal activity of these sensors and elucidate population coding of stresses acting on the cuticle.
Collapse
Affiliation(s)
- Gesa F Dinges
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - William P Zyhowski
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Anastasia Lucci
- Lane Innovation Hub, West Virginia University, Morgantown, WV, United States of America
| | - Jordan Friend
- Lane Innovation Hub, West Virginia University, Morgantown, WV, United States of America
| | - Nicholas S Szczecinski
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
4
|
Zill SN, Dallmann CJ, Zyhowski W, Chaudhry H, Gebehart C, Szczecinski NS. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects. J Neurophysiol 2024; 131:198-215. [PMID: 38166479 PMCID: PMC11286306 DOI: 10.1152/jn.00414.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024] Open
Abstract
Force feedback could be valuable in adapting walking to diverse terrains, but the effects of changes in substrate inclination on discharges of sensory receptors that encode forces have rarely been examined. In insects, force feedback is provided by campaniform sensilla, mechanoreceptors that monitor forces as cuticular strains. We neurographically recorded responses of stick insect tibial campaniform sensilla to "naturalistic" forces (joint torques) that occur at the hind leg femur-tibia (FT) joint in uphill, downhill, and level walking. The FT joint torques, obtained in a previous study that used inverse dynamics to analyze data from freely moving stick insects, are quite variable during level walking (including changes in sign) but are larger in magnitude and more consistent when traversing sloped surfaces. Similar to vertebrates, insects used predominantly extension torque in propulsion on uphill slopes and flexion torques to brake forward motion when going downhill. Sensory discharges to joint torques reflected the torque direction but, unexpectedly, often occurred as multiple bursts that encoded the rate of change of positive forces (dF/dt) even when force levels were high. All discharges also showed hysteresis (history dependence), as firing substantially decreased or ceased during transient force decrements. These findings have been tested in simulation in a mathematical model of the sensilla (Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. Bioinspir Biomim 16: 065001, 2021) that accurately reproduced the biological data. Our results suggest the hypothesis that sensory feedback from the femoro-tibial joint indicating force dynamics (dF/dt) can be used to counter the instability in traversing sloped surfaces in animals and, potentially, in walking machines.NEW & NOTEWORTHY Discharges of sensory receptors (campaniform sensilla) in the hind legs of stick insects can differentially signal forces that occur in walking uphill versus walking downhill. Unexpectedly, sensory firing most closely reflects the rate of change of force (dF/dt) even when the force levels are high. These signals have been replicated in a mathematical model of the receptors and could be used to stabilize leg movements both in the animal and in a walking robot.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Chris J Dallmann
- Department of Neurobiology and Genetics, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - William Zyhowski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| | - Hibba Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Corinna Gebehart
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
5
|
Dallmann CJ, Dickerson BH, Simpson JH, Wyart C, Jayaram K. Mechanosensory Control of Locomotion in Animals and Robots: Moving Forward. Integr Comp Biol 2023; 63:450-463. [PMID: 37279901 PMCID: PMC10445419 DOI: 10.1093/icb/icad057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
While animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation-the sensing of mechanical forces generated within and outside the body-as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback. We argue that robotics would benefit greatly from a detailed understanding of these aspects in animals. To that end, we highlight promising experimental and engineering approaches to study mechanosensation, emphasizing the mutual benefits for biologists and engineers that emerge from moving forward together.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris 75005, France
| | - Kaushik Jayaram
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Zyhowski WP, Zill SN, Szczecinski NS. Adaptive load feedback robustly signals force dynamics in robotic model of Carausius morosus stepping. Front Neurorobot 2023; 17:1125171. [PMID: 36776993 PMCID: PMC9908954 DOI: 10.3389/fnbot.2023.1125171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Animals utilize a number of neuronal systems to produce locomotion. One type of sensory organ that contributes in insects is the campaniform sensillum (CS) that measures the load on their legs. Groups of the receptors are found on high stress regions of the leg exoskeleton and they have significant effects in adapting walking behavior. Recording from these sensors in freely moving animals is limited by technical constraints. To better understand the load feedback signaled by CS to the nervous system, we have constructed a dynamically scaled robotic model of the Carausius morosus stick insect middle leg. The leg steps on a treadmill and supports weight during stance to simulate body weight. Strain gauges were mounted in the same positions and orientations as four key CS groups (Groups 3, 4, 6B, and 6A). Continuous data from the strain gauges were processed through a previously published dynamic computational model of CS discharge. Our experiments suggest that under different stepping conditions (e.g., changing "body" weight, phasic load stimuli, slipping foot), the CS sensory discharge robustly signals increases in force, such as at the beginning of stance, and decreases in force, such as at the end of stance or when the foot slips. Such signals would be crucial for an insect or robot to maintain intra- and inter-leg coordination while walking over extreme terrain.
Collapse
Affiliation(s)
- William P. Zyhowski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States,*Correspondence: William P. Zyhowski,
| | - Sasha N. Zill
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Nicholas S. Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
7
|
Harris CM, Szczecinski NS, Büschges A, Zill SN. Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies. J Neurophysiol 2022; 128:790-807. [PMID: 36043841 PMCID: PMC9529259 DOI: 10.1152/jn.00285.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg. Responses to bending force decreases were phasic but had rate sensitivities similar to discharges elicited by force increases in the opposite direction. Application of stimuli of equivalent amplitude at different offset levels showed that discharges were strongly dependent upon the tonic level of loading: firing was maximal to complete unloading of the leg but substantially decreased or eliminated by sustained loads. The contribution of cuticle properties to sensory responses was also evaluated: discharges to force increases showed decreased adaptation when mechanical stress relaxation was minimized; firing to force decreases could be related to viscoelastic “creep” in the cuticle. Discharges to force decrements apparently occur due to cuticle viscoelasticity that generates transient strains similar to bending in the opposite direction. Tuning of sensory responses through cuticular and membrane properties effectively distinguishes loss of substrate grip/complete unloading from force variations due to gait in walking. We have successfully reproduced these properties in a mathematical model of the receptors. Sensors with similar tuning could fulfil these functions in legs of walking machines. NEW & NOTEWORTHY Decreases in loading of legs are important in the regulation of posture and walking in both vertebrates and invertebrates. Recordings of activities of tibial campaniform sensilla, which encode forces in insects, showed that their responses are specifically tuned to detect force decreases at the end of the stance phase of walking or when a leg slips. These results have been reproduced in a mathematical model of the receptors and also have potential applications in robotics.
Collapse
Affiliation(s)
- Christian M Harris
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
8
|
Tauber F, Vouloutsi V, Mura A, Speck T. Editorial: Living machines: from biological models to soft machines. BIOINSPIRATION & BIOMIMETICS 2022; 17:030201. [PMID: 35294942 DOI: 10.1088/1748-3190/ac5e81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Falk Tauber
- Cluster of Excellence livMatS@ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
- Plant Biomechanics Group & Botanic Garden, University of Freiburg, Germany
| | - Vasiliki Vouloutsi
- Autonomous Robotics Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Anna Mura
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Thomas Speck
- Cluster of Excellence livMatS@ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
- Plant Biomechanics Group & Botanic Garden, University of Freiburg, Germany
| |
Collapse
|