1
|
Gebehart C, Büschges A. The processing of proprioceptive signals in distributed networks: insights from insect motor control. J Exp Biol 2024; 227:jeb246182. [PMID: 38180228 DOI: 10.1242/jeb.246182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The integration of sensory information is required to maintain body posture and to generate robust yet flexible locomotion through unpredictable environments. To anticipate required adaptations in limb posture and enable compensation of sudden perturbations, an animal's nervous system assembles external (exteroception) and internal (proprioception) cues. Coherent neuronal representations of the proprioceptive context of the body and the appendages arise from the concerted action of multiple sense organs monitoring body kinetics and kinematics. This multimodal proprioceptive information, together with exteroceptive signals and brain-derived descending motor commands, converges onto premotor networks - i.e. the local neuronal circuitry controlling motor output and movements - within the ventral nerve cord (VNC), the insect equivalent of the vertebrate spinal cord. This Review summarizes existing knowledge and recent advances in understanding how local premotor networks in the VNC use convergent information to generate contextually appropriate activity, focusing on the example of posture control. We compare the role and advantages of distributed sensory processing over dedicated neuronal pathways, and the challenges of multimodal integration in distributed networks. We discuss how the gain of distributed networks may be tuned to enable the behavioral repertoire of these systems, and argue that insect premotor networks might compensate for their limited neuronal population size by, in comparison to vertebrate networks, relying more heavily on the specificity of their connections. At a time in which connectomics and physiological recording techniques enable anatomical and functional circuit dissection at an unprecedented resolution, insect motor systems offer unique opportunities to identify the mechanisms underlying multimodal integration for flexible motor control.
Collapse
Affiliation(s)
- Corinna Gebehart
- Champalimaud Foundation, Champalimaud Research, 1400-038 Lisbon, Portugal
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
2
|
Mangan M, Floreano D, Yasui K, Trimmer BA, Gravish N, Hauert S, Webb B, Manoonpong P, Szczecinski N. A virtuous cycle between invertebrate and robotics research: perspective on a decade of Living Machines research. BIOINSPIRATION & BIOMIMETICS 2023; 18:035005. [PMID: 36881919 DOI: 10.1088/1748-3190/acc223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Many invertebrates are ideal model systems on which to base robot design principles due to their success in solving seemingly complex tasks across domains while possessing smaller nervous systems than vertebrates. Three areas are particularly relevant for robot designers: Research on flying and crawling invertebrates has inspired new materials and geometries from which robot bodies (their morphologies) can be constructed, enabling a new generation of softer, smaller, and lighter robots. Research on walking insects has informed the design of new systems for controlling robot bodies (their motion control) and adapting their motion to their environment without costly computational methods. And research combining wet and computational neuroscience with robotic validation methods has revealed the structure and function of core circuits in the insect brain responsible for the navigation and swarming capabilities (their mental faculties) displayed by foraging insects. The last decade has seen significant progress in the application of principles extracted from invertebrates, as well as the application of biomimetic robots to model and better understand how animals function. This Perspectives paper on the past 10 years of the Living Machines conference outlines some of the most exciting recent advances in each of these fields before outlining lessons gleaned and the outlook for the next decade of invertebrate robotic research.
Collapse
Affiliation(s)
- Michael Mangan
- The University of Sheffield, Mappin St, Sheffield S10 2TN, United Kingdom
| | - Dario Floreano
- Ecole Polytechnique Federale de Lausanne, Laboratory of Intelligent Systems, Station 9, Lausanne CH-1015, Switzerland
| | - Kotaro Yasui
- Tohoku University, Frontier Research Institute for Interdisciplinary Sciences, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Barry A Trimmer
- Tufts University, Biology, 200 Boston Av, Boston, MA 02111, United States of America
| | - Nick Gravish
- University of California San Diego, Mechanical and Aerospace Engineering, Building EBU II, La Jolla, CA 92093, United States of America
| | - Sabine Hauert
- University of Bristol, Engineering Mathematics, Bristol BS8 1QU, United Kingdom
| | - Barbara Webb
- University of Edinburgh, School of Informatics, 10 Crichton St, Edinburgh EH8 9AB, United Kingdom
| | - Poramate Manoonpong
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand
| | - Nicholas Szczecinski
- West Virginia University, Mechanical and Aerospace Engineering, Morgantown, WV 26506-6201, United States of America
| |
Collapse
|
3
|
Schilling M, Cruse H. neuroWalknet, a controller for hexapod walking allowing for context dependent behavior. PLoS Comput Biol 2023; 19:e1010136. [PMID: 36693085 PMCID: PMC9897571 DOI: 10.1371/journal.pcbi.1010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/03/2023] [Accepted: 11/18/2022] [Indexed: 01/25/2023] Open
Abstract
Decentralized control has been established as a key control principle in insect walking and has been successfully leveraged to account for a wide range of walking behaviors in the proposed neuroWalknet architecture. This controller allows for walking patterns at different velocities in both, forward and backward direction-quite similar to the behavior shown in stick insects-, for negotiation of curves, and for robustly dealing with various disturbances. While these simulations focus on the cooperation of different, decentrally controlled legs, here we consider a set of biological experiments not yet been tested by neuroWalknet, that focus on the function of the individual leg and are context dependent. These intraleg studies deal with four groups of interjoint reflexes. The reflexes are elicited by stimulation of the femoral chordotonal organ (fCO) or groups of campaniform sensilla (CS). Motor output signals are recorded from the alpha-joint, the beta-joint or the gamma-joint of the leg. Furthermore, the influence of these sensory inputs to artificially induced oscillations by application of pilocarpine has been studied. Although these biological data represent results obtained from different local reflexes in different contexts, they fit with and are embedded into the behavior shown by the global structure of neuroWalknet. In particular, a specific and intensively studied behavior, active reaction, has since long been assumed to represent a separate behavioral element, from which it is not clear why it occurs in some situations, but not in others. This question could now be explained as an emergent property of the holistic structure of neuroWalknet which has shown to be able to produce artificially elicited pilocarpine-driven oscillation that can be controlled by sensory input without the need of explicit innate CPG structures. As the simulation data result from a holistic system, further results were obtained that could be used as predictions to be tested in further biological experiments.
Collapse
Affiliation(s)
- Malte Schilling
- Malte Schilling, Autonomous Intelligent Systems Group, University of Münster, Münster, Germany
| | - Holk Cruse
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Gebehart C, Hooper SL, Büschges A. Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg. Curr Biol 2022; 32:3847-3854.e3. [PMID: 35896118 DOI: 10.1016/j.cub.2022.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Producing context-appropriate motor acts requires integrating multiple sensory modalities. Presynaptic inhibition of proprioceptive afferent neurons1-4 and afferents of different modalities targeting the same motor neurons (MNs)5-7 underlies some of this integration. However, in most systems, an interneuronal network is interposed between sensory afferents and MNs. How these networks contribute to this integration, particularly at single-neuron resolution, is little understood. Context-specific integration of load and movement sensory inputs occurs in the stick insect locomotory system,6,8-12 and both inputs feed into a network of premotor nonspiking interneurons (NSIs).8 We analyzed how load altered movement signal processing in the stick insect femur-tibia (FTi) joint control system by tracing the interaction of FTi movement13-15 (femoral chordotonal organ [fCO]) and load13,15,16 (tibial campaniform sensilla [CS]) signals through the NSI network to the slow extensor tibiae (SETi) MN, the extensor MN primarily active in non-walking animals.17-19 On the afferent level, load reduced movement signal gain by presynaptic inhibition. In the NSI network, graded responses to movement and load inputs summed nonlinearly, increasing the gain of NSIs opposing movement-induced reflexes and thus decreasing the SETi and extensor tibiae muscle movement reflex responses. Gain modulation was movement-parameter specific and required presynaptic inhibition. These data suggest that gain changes in distributed premotor networks, specifically the relative weighting of antagonistic pathways, could be a general mechanism by which multiple sensory modalities are integrated to generate context-appropriate motor activity.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| | - Scott L Hooper
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany; Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
5
|
Tauber F, Vouloutsi V, Mura A, Speck T. Editorial: Living machines: from biological models to soft machines. BIOINSPIRATION & BIOMIMETICS 2022; 17:030201. [PMID: 35294942 DOI: 10.1088/1748-3190/ac5e81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Falk Tauber
- Cluster of Excellence livMatS@ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
- Plant Biomechanics Group & Botanic Garden, University of Freiburg, Germany
| | - Vasiliki Vouloutsi
- Autonomous Robotics Research Centre, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Anna Mura
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Thomas Speck
- Cluster of Excellence livMatS@ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany
- Plant Biomechanics Group & Botanic Garden, University of Freiburg, Germany
| |
Collapse
|