1
|
Baban NS, Zhou J, Elkhoury K, Bhattacharjee S, Vijayavenkataraman S, Gupta N, Song YA, Chakrabarty K, Karri R. BioTrojans: viscoelastic microvalve-based attacks in flow-based microfluidic biochips and their countermeasures. Sci Rep 2024; 14:19806. [PMID: 39191836 PMCID: PMC11350023 DOI: 10.1038/s41598-024-70703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Flow-based microfluidic biochips (FMBs) are widely used in biomedical research and diagnostics. However, their security against potential material-level cyber-physical attacks remains inadequately explored, posing a significant future challenge. One of the main components, polydimethylsiloxane (PDMS) microvalves, is pivotal to FMBs' functionality. However, their fabrication, which involves thermal curing, makes them susceptible to chemical tampering-induced material degradation attacks. Here, we demonstrate one such material-based attack termed "BioTrojans," which are chemically tampered and optically stealthy microvalves that can be ruptured through low-frequency actuations. To chemically tamper with the microvalves, we altered the associated PDMS curing ratio. Attack demonstrations showed that BioTrojan valves with 30:1 and 50:1 curing ratios ruptured quickly under 2 Hz frequency actuations, while authentic microvalves with a 10:1 ratio remained intact even after being actuated at the same frequency for 2 days (345,600 cycles). Dynamic mechanical analyzer (DMA) results and associated finite element analysis revealed that a BioTrojan valve stores three orders of magnitude more mechanical energy than the authentic one, making it highly susceptible to low-frequency-induced ruptures. To counter BioTrojan attacks, we propose a security-by-design approach using smooth peripheral fillets to reduce stress concentration by over 50% and a spectral authentication method using fluorescent microvalves capable of effectively detecting BioTrojans.
Collapse
Affiliation(s)
- Navajit Singh Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Jiarui Zhou
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kamil Elkhoury
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sukanta Bhattacharjee
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, New York University, New York, USA
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Krishnendu Chakrabarty
- School of Electrical, Computer and Energy Engineering, Arizona State University, Arizona, USA
| | - Ramesh Karri
- Department of Electrical and Computer Engineering, New York University, New York, USA
| |
Collapse
|
2
|
Baban NS, Saha S, Jancheska S, Singh I, Khapli S, Khobdabayev M, Kim J, Bhattacharjee S, Song YA, Chakrabarty K, Karri R. Material-level countermeasures for securing microfluidic biochips. LAB ON A CHIP 2023; 23:4213-4231. [PMID: 37605818 DOI: 10.1039/d3lc00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Flow-based microfluidic biochips (FMBs) have been rapidly commercialized and deployed in recent years for biological computing, clinical diagnostics, and point-of-care-tests (POCTs). However, outsourcing FMBs makes them susceptible to material-level attacks by malicious actors for illegitimate monetary gain. The attacks involve deliberate material degradation of an FMB's polydimethylsiloxane (PDMS) components by either doping with reactive solvents or altering the PDMS curing ratio during fabrication. Such attacks are stealthy enough to evade detection and deteriorate the FMB's function. Furthermore, material-level attacks can become prevalent in attacks based on intellectual property (IP) theft, such as counterfeiting, overbuilding, etc., which involve unscrupulous third-party manufacturers. To address this problem, we present a dynamic material-level watermarking scheme for PDMS-based FMBs with microvalves using a perylene-labeled fluorescent dye. The dyed microvalves show a unique excimer intensity peak under 405 nm laser excitation. Moreover, when pneumatically actuated, the peak shows a predetermined downward shift in intensity as a function of mechanical strain. We validated this protection scheme experimentally using fluorescence microscopy, which showed a high correlation (R2 = 0.971) between the normalized excimer intensity change and the maximum principal strain of the actuated microvalves. To detect curing ratio-based attacks, we adapted machine learning (ML) models, which were trained on the force-displacement data obtained from a mechanical punch test method. Our ML models achieved more than 99% accuracy in detecting curing ratio anomalies. These countermeasures can be used to proactively safeguard FMBs against material-level attacks in the era of global pandemics and diagnostics based on POCTs.
Collapse
Affiliation(s)
- Navajit Singh Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sohini Saha
- Department of Electrical and Computer Engineering, Duke University, Durham, USA
| | - Sofija Jancheska
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Inderjeet Singh
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sachin Khapli
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Maksat Khobdabayev
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Jongmin Kim
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sukanta Bhattacharjee
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, India
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Krishnendu Chakrabarty
- School of Electrical, Computer and Energy Engineering, Arizona State University, Phoenix, Arizona, USA
| | - Ramesh Karri
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, USA
| |
Collapse
|
3
|
Baban NS, Song YA. Rational design of bioinspired tissue adhesives. Clin Transl Med 2022; 12:e784. [PMID: 35389563 PMCID: PMC8989077 DOI: 10.1002/ctm2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Navajit S Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, USA.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, USA
| |
Collapse
|