1
|
Qin Y, Zhang K, Sun T, Shen P, Wang H, Zhang Z, Qiangui R. Effect of miR-222 on the Angiogenesis of Bone Microvascular Endothelial Cells After Repair of Vascular Endothelial Growth Factor with Polylactide-Poly(ethylene glycol)-Polylactide (PELA) Microspheres. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objectives of this study were to show the effect of miR-222 expression on angiogenesis and the mechanism of angiogenesis differentiation of bone microvascular endothelial cells. For the study, the concentration of VEGF release was detected by ELISA, and cell activity was shown using
a CCK-8 (Cell Counting Kit-8). We used western blotting to detect VEGFR, TGF-β, and bFGF expression. The results showed that miR-222 expression by day 14 was significantly lower compared to the expression results for days 3 and 7. Additionally, miR-222 expression on day 7 was significantly
lower than on day 3. MiR-222 expression in the control group and PELA group decreased gradually over time. On day 14, miR-222 expression in the VEGF microcapsule scaffold group was at its lowest level. Our conclusions were that the regulation of the angiogenesis of bone microvascular endothelial
cells appears to be related to (1) the effect of miR-222 on VEGFR and TGF-β, and (2) how bFGF expression is regulated.
Collapse
Affiliation(s)
- Yuxing Qin
- Department of Emergency, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010059, Hohhot, People Republic of China
| | - Kun Zhang
- Department of Emergency, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010059, Hohhot, People Republic of China
| | - Tao Sun
- Department of Emergency, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010059, Hohhot, People Republic of China
| | - Peifeng Shen
- Department of Emergency, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010059, Hohhot, People Republic of China
| | - Haoyu Wang
- Department of Emergency, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010059, Hohhot, People Republic of China
| | - Zhiyong Zhang
- Department of Emergency, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010059, Hohhot, People Republic of China
| | - Ren Qiangui
- Department of Emergency, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010059, Hohhot, People Republic of China
| |
Collapse
|
2
|
Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, Bikiaris DN. Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics 2022; 14:359. [PMID: 35214091 PMCID: PMC8877458 DOI: 10.3390/pharmaceutics14020359] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The sustained release of pharmaceutical substances remains the most convenient way of drug delivery. Hence, a great variety of reports can be traced in the open literature associated with drug delivery systems (DDS). Specifically, the use of microparticle systems has received special attention during the past two decades. Polymeric microparticles (MPs) are acknowledged as very prevalent carriers toward an enhanced bio-distribution and bioavailability of both hydrophilic and lipophilic drug substances. Poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and their copolymers are among the most frequently used biodegradable polymers for encapsulated drugs. This review describes the current state-of-the-art research in the study of poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles and PLA-copolymers with other aliphatic acids as drug delivery devices for increasing the efficiency of drug delivery, enhancing the release profile, and drug targeting of active pharmaceutical ingredients (API). Potential advances in generics and the constant discovery of therapeutic peptides will hopefully promote the success of microsphere technology.
Collapse
Affiliation(s)
- Antonios Vlachopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Georgia Karlioti
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Vasileios Daniilidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Theocharis Kalamas
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Myrika Stefanidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, GR-153 51 Attiki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| |
Collapse
|
3
|
Dahdouh A, Kati DE, Bachir-Bey M, Aksas A, Rezgui F. Deployment of response surface methodology to optimize microencapsulation of peroxidases from turnip roots (Brassica rapa L.) by double emulsion in PLA polymer. J Food Sci 2021; 86:1893-1906. [PMID: 33895995 DOI: 10.1111/1750-3841.15721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 11/27/2022]
Abstract
In order to improve the preservation conditions and stability of peroxidase catalytic properties, a number of immobilization techniques have been widely developed. In this context, we set as objective, the optimization of synthesis and stability of microcapsules of peroxidases (POD) from turnip using polylactic acid (PLA) polymer with the double emulsion technique. The surfactant, polymer, and peroxidase concentrations were the optimized parameters. According to the results obtained using the Box-Behnken design, the optimal parameters found were 1.55% of PVA, 55 mg/mL of peroxidases, and 30 mg/mL of PLA polymer with an encapsulation efficiency of 57.29%. The scanning electron microscopy morphological characterization of the optimized microcapsules showed a regular spherical structure. Fourier transform infrared spectroscopy identified the specific functional groups and chemical bonds before and after microencapsulation. The elaborated microcapsules were characterized by an average size of 200 µm (mainly from 150 to 500 µm) with a low residual moisture content (2.26%) and the encapsulated peroxidases showed better thermal stability. The in vitro release of peroxidases confirmed that the microcapsules have an excellent sustained release in simulated gastric digestion. Encapsulated peroxidases' storage under 25 and 4 °C displays a good residual POD activity with about 60% of initial activities during 80 days of storage, whereas free POD losses its initial activity within 15 and 30 days, respectively. The obtained results are promising for the development of effective therapeutic treatment of some intestinal troubles due to oxidative stress. PRACTICAL APPLICATION: Brassica rapa L. root is well known for its richness on peroxidases and thus presents an interesting potential for developing high added value products. In order to preserve the activity of extracted peroxidases (POD) from turnip roots, microencapsulation was optimized using a polylactic acid polymer. The encapsulated POD showed the maintenance of its activity under the effect of different storage conditions (time and temperature) and demonstrated resistance to gastric acidity. According to the obtained results, the encapsulation of peroxidases opens up medicine and pharmaceutical applications such as intestinal and colic protection against inflammations.
Collapse
Affiliation(s)
- Amel Dahdouh
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Djamel Edine Kati
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Mostapha Bachir-Bey
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Ali Aksas
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Farouk Rezgui
- Laboratoire des Matériaux organiques, Département de Génie des Procèdes, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria
| |
Collapse
|
4
|
Zohri M, Akbari Javar H, Gazori T, Khoshayand MR, Aghaee-Bakhtiari SH, Ghahremani MH. Response Surface Methodology for Statistical Optimization of Chitosan/Alginate Nanoparticles as a Vehicle for Recombinant Human Bone Morphogenetic Protein-2 Delivery. Int J Nanomedicine 2020; 15:8345-8356. [PMID: 33154637 PMCID: PMC7606360 DOI: 10.2147/ijn.s250630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose In this study, chitosan/alginate nanoparticles are prospected as a carrier for controlled release of recombinant human bone morphogenetic protein-2 (rhBMP-2). Materials and Methods The rhBMP-2-loaded chitosan/alginate nanoparticles (Cs/Alg/B NPs) were prepared using the ionic gelation (IG) method. The current research was conducted to optimize the effective factors for entrapping rhBMP-2 in Cs/Alg NPs using response surface methodology (RSM) and the Box–Behnken design (BBD). The variables were the Cs/Alg molecular weight (Mw) ratios (1–3), pH (4.8–5.5), stirring rates (900–1300 rpm) and the responses included size, ζ-potential, polydispersity index (PDI), loading efficacy (LE), cumulative release (CR), and morphological degradation time (MDE). Then, the morphological properties of optimum formulation were studied for post-characterization. In the next step, the MTT assay for the optimized run was done for 24 and 48 hours. Results The results revealed that the optimum conditions for the mentioned variables were stirring rate=1100 rpm, pH=5.15, and Cs/Alg Mw ratio=1.75 based on numerical optimization. It was shown that the average particle size and loading efficacy at optimum conditions were 253 nm and 67%, respectively. Other responses were as follows: CR=66%, ζ-potential=+35mV, PDI=0.5, and MDT=7 days. Conclusion The results have suggested that the statistical optimization of rhBMP-2 offers the possibility of preparing Cs/Alg/B NPs with a favorable size, controlled release characteristics, and high loading efficiency. It is expected that the acquired optimum conditions will be useful for efficient rhBMP-2 delivery.
Collapse
Affiliation(s)
- Maryam Zohri
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Departments of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Gazori
- Research and Development Department, Trita Nano Pharmaceutical Research Center, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang C, Wang J, Xie Y, Wang L, Yang L, Yu J, Miyamoto A, Sun F. Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration. Regen Biomater 2020; 8:rbaa046. [PMID: 33732492 PMCID: PMC7947599 DOI: 10.1093/rb/rbaa046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Guided bone regeneration (GBR) membrane has been used to improve functional outcomes for periodontal regeneration. However, few studies have focused on the biomimetic membrane mimicking the vascularization of the periodontal membrane. This study aimed to fabricate waterborne polyurethane (WPU) fibrous membranes loaded fibroblast growth factor-2 (FGF-2) via emulsion electrospinning, which can promote regeneration of periodontal tissue via the vascularization of the biomimetic GBR membrane. A biodegradable WPU was synthesized by using lysine and dimethylpropionic acid as chain extenders according to the rule of green chemical synthesis technology. The WPU fibers with FGF-2 was fabricated via emulsion electrospinning. The results confirmed that controlled properties of the fibrous membrane had been achieved with controlled degradation, suitable mechanical properties and sustained release of the factor. The immunohistochemical expression of angiogenic-related factors was positive, meaning that FGF-2 loaded in fibers can significantly promote cell vascularization. The fiber scaffold loaded FGF-2 has the potential to be used as a functional GBR membrane to promote the formation of extraosseous blood vessels during periodontal repairing.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Yujie Xie
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Li Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Lishi Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jihua Yu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Akira Miyamoto
- Faculty of Rehabilitation, Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Fuhua Sun
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
- Correspondence address. Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, P.R. China. Tel.: +81-18428397607; E-mail:
| |
Collapse
|
6
|
Zhao S, Yin J, Yu Q, Zhang G, Min S. [Vascular endothelial growth factor/polylactide-polyethyleneglycol-polylactic acid copolymer/basic fibroblast growth factor mixed microcapsules in promoting angiogenic differentiation of rat bone marrow mesenchymal stem cells in vitro]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:243-251. [PMID: 30739424 PMCID: PMC8337609 DOI: 10.7507/1002-1892.201808099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/14/2018] [Indexed: 11/03/2022]
Abstract
Objective To observe the effect of vascular endothelial growth factor/polylactide-polyethyleneglycol-polylactic acid copolymer/basic fibroblast growth factor (VEGF/PELA/bFGF) mixed microcapsules in promoting the angiogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. Methods The BMSCs were isolated by the method of whole bone marrow adherent, and sub-cultured. The passage 3 BMSCs were identified by Wright-Giemsa staining and flow cytometry, and used for subsequent experiments. VEGF/PELA/bFGF (group A), PELA/bFGF (group B), VEGF/PELA (group C), and PELA (group D) microcapsules were prepared. The biodegradable ability and cytotoxicity of PELA microcapsule were determined,and the slow-released ability of VEGF/PELA/bFGF mixed microcapsules was measured. The passage 3 BMSCs were co-cultured with the extracts of groups A, B, C, and D, separately. At 1, 3, 7, 14, and 20 days after being cultured, the morphological changes of induced BMSCs were recorded. At 21 days, the induced BMSCs were tested for DiI-labeled acetylated low density lipoprotein (Dil-ac-LDL) and FITC-labeled ulex europaeus agglutinin I (FITC-UEA-I) uptake ability. The tube-forming ability of the induced cells on Matrigel was also verified. The differences of the vascularize indexes in nodes, master junctions, master segments, and tot.master segments length in 4 groups were summarized and analyzed. Results The isolated and cultured cells were identified as BMSCs. The degradation time of PELA was more than 20 days. There was no significant effect on cell viability under co-culture conditions. At 20 days, the cumulative release of VEGF in the mixed microcapsules exceeded 95%, and the quantity of bFGF exceeded 80%. The morphology of cells in groups A, B, and C were changed. The cells in groups A and B showed the typical change of cobble-stone morphology. The numbers of double fluorescent labeled cells observed by fluorescence microscope were the most in group A, and decreases from group B and group C, with the lowest in group D. The cells in groups A and B formed a grid-like structure on Matrigel. Quantitative analysis showed that the differences in the number of nodes, master junctions, master segments, and tot.master segments length between groups A, B and groups C, D were significant ( P<0.05). The number of nodes and the tot.master segments length of group A were more than those of group B ( P<0.05). There was no significant differences in the number of master junctions and master segments between group A and group B ( P>0.05). Conclusion VEGF/PELA/bFGF mixed microcapsules have significantly ability to promote the angiogenic differentiation of rat BMSCs in vitro.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Spinal Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou Guangdong, 510282, P.R.China
| | - Jie Yin
- Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo Zhejiang, 315040, P.R.China
| | - Qinghe Yu
- Department of Spinal Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou Guangdong, 510282, P.R.China
| | - Guowei Zhang
- Department of Spinal Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou Guangdong, 510282, P.R.China
| | - Shaoxiong Min
- Department of Spinal Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou Guangdong, 510282,
| |
Collapse
|
7
|
Aragón J, Salerno S, De Bartolo L, Irusta S, Mendoza G. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. J Colloid Interface Sci 2018; 531:126-137. [PMID: 30029031 DOI: 10.1016/j.jcis.2018.07.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS The development of novel scaffolds based on biocompatible polymers is of great interest in the field of bone repair for fabrication of biodegradable scaffolds that mimic the extracellular matrix and have osteoconductive and osteoinductive properties for enhanced bone regeneration. EXPERIMENTS Polycaprolactone (PCL) and polycaprolactone/polyvinyl acetate (PCL/PVAc) core-shell fibers were synthesised and decorated with poly(lactic-co-glycolic acid) [PLGA] particles loaded with bone morphogenetic protein 2 (BMP2) by simultaneous electrospinning and electrospraying. Hydroxyapatite nanorods (HAn) were loaded into the core of fibers. The obtained scaffolds were characterised by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The in vitro potential of these materials for bone regeneration was assessed in biodegradation assays, osteoblast viability assays, and analyses of expression of specific bone markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). FINDINGS PLGA particles were homogeneously distributed in the entire fibre mat. The growth factor load was 1.2-1.7 μg/g of the scaffold whereas the HAn load was in the 8.8-12.6 wt% range. These scaffolds were able to support and enhance cell growth and proliferation facilitating the expression of osteogenic and osteoconductive markers (OCN and OPN). These observations underline the great importance of the presence of BMP2 in scaffolds for bone remodelling as well as the good potential of the newly developed scaffolds for clinical use in tissue engineering.
Collapse
Affiliation(s)
- Javier Aragón
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| | - Simona Salerno
- Institute for Membrane Technology, National Research Council of Italy, ITM-CNR c/o University of Calabria, Via P. Bucci cubo 17/C, I-87036 Rende, Italy.
| | - Loredana De Bartolo
- Institute for Membrane Technology, National Research Council of Italy, ITM-CNR c/o University of Calabria, Via P. Bucci cubo 17/C, I-87036 Rende, Italy.
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| |
Collapse
|
8
|
Ren Q, Cai M, Zhang K, Ren W, Su Z, Yang T, Sun T, Wang J. Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone. ACTA ACUST UNITED AC 2017; 51:e6520. [PMID: 29211249 PMCID: PMC5711005 DOI: 10.1590/1414-431x20176520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Abstract
Multiple growth factors can be administered to mimic the natural process of bone healing in bone tissue engineering. We investigated the effects of sequential release of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone regeneration. To improve the double emulsion/solvent evaporation technique, VEGF was encapsulated in PELA microcapsules, to which BMP-2 was attached. The scaffold (BMP-2/PELA/VEGF) was then fused to these microcapsules using the dichloromethane vapor method. The bioactivity of the released BMP-2 and VEGF was then quantified in rat mesenchymal stem cells (rMSCs). Immunoblotting analysis showed that BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblasts via the MAPK and Wnt pathways. Osteoblast differentiation was assessed through alkaline phosphatase expression. When compared with simple BMP-2 plus VEGF group and pure PELA group, osteoblast differentiation in BMP-2/PELA/VEGF group significantly increased. An MTT assay indicated that BMP-2-loaded PELA scaffolds had no adverse effects on cell activity. BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblast via the ERK1/2 and Wnt pathways. Our findings indicate that the sequential release of BMP-2 and VEGF from PELA microcapsule-based scaffolds is a promising approach for the treatment of bone defects.
Collapse
Affiliation(s)
- Q Ren
- Emergency Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - M Cai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - K Zhang
- Emergency Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - W Ren
- Emergency Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Z Su
- Emergency Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - T Yang
- Emergency Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - T Sun
- Emergency Department, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - J Wang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
Wing Moon Lam R, Abbah SA, Ming W, Naidu M, Ng F, Tao H, Goh Cho Hong J, Ting K, Hee Kit W. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery. J Vis Exp 2016. [PMID: 27585207 DOI: 10.3791/54202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries. This in turn will reduce side effects and growth factor costs. Self-assembled PECs have been fabricated to provide better control of BMP-2/NELL-1 delivery via heparin binding and further potentiate growth factor bioactivity by enhancing in vivo stability. Here we illustrate the simplicity of PEC fabrication which aids in the delivery of a variety of growth factors during reconstructive bone surgeries.
Collapse
Affiliation(s)
- Raymond Wing Moon Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore;
| | - Sunny Akogwu Abbah
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway
| | - Wang Ming
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore
| | - Mathanapriya Naidu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore
| | - Felly Ng
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore
| | - Hu Tao
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore
| | - James Goh Cho Hong
- Department of Bioengineering, Faculty of Engineering, National University of Singapore; Tissue Engineering Program, National University of Singapore
| | - Kang Ting
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles
| | - Wong Hee Kit
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore; Tissue Engineering Program, National University of Singapore
| |
Collapse
|
10
|
Qiu M, Chen D, Shen C, Shen J, Zhao H, He Y. Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. Int J Mol Sci 2016; 17:ijms17071001. [PMID: 27347938 PMCID: PMC4964377 DOI: 10.3390/ijms17071001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
Traditional therapeutic methods for skin wounds have many disadvantages, and new wound dressings that can facilitate the healing process are thus urgently needed. Platelet-rich plasma (PRP) contains multiple growth factors (GFs) and shows a significant capacity to heal soft tissue wounds. However, these GFs have a short half-life and deactivate rapidly; we therefore need a sustained delivery system to overcome this shortcoming. In this study, poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA: PLEL) hydrogel was successfully created as delivery vehicle for PRP GFs and was evaluated systematically. PLEL hydrogel was injectable at room temperature and exhibited a smart thermosensitive in situ gel-formation behavior at body temperature. In vitro cell culture showed PRP-loaded PLEL hydrogel (PRP/PLEL) had little cytotoxicity, and promoted EaHy926 proliferation, migration and tube formation; the factor release assay additionally indicated that PLEL realized the controlled release of PRP GFs for as long as 14 days. When employed to treat rodents’ full-thickness skin defects, PRP/PLEL showed a significantly better ability to raise the number of both newly formed and mature blood vessels compared to the control, PLEL and PRP groups. Furthermore, the PRP/PLEL-treated group displayed faster wound closure, better reepithelialization and collagen formation. Taken together, PRP/PLEL provides a promising strategy for promoting angiogenesis and skin wound healing, which extends the potential of this dressing for clinical application.
Collapse
Affiliation(s)
- Manle Qiu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Daoyun Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Chaoyong Shen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ji Shen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Huakun Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Yaohua He
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
11
|
Xu X, Qiu S, Zhang Y, Yin J, Min S. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:330-339. [PMID: 26961803 DOI: 10.3109/21691401.2016.1153480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.
Collapse
Affiliation(s)
- Xiaolong Xu
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Sujun Qiu
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Yuxian Zhang
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Jie Yin
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Shaoxiong Min
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| |
Collapse
|