1
|
Sivasankar MV, Chinta ML, Sreenivasa Rao P. Zirconia based composite scaffolds and their application in bone tissue engineering. Int J Biol Macromol 2024; 265:130558. [PMID: 38447850 DOI: 10.1016/j.ijbiomac.2024.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
In the field of bone tissue engineering, biomimetic scaffold utilization is deemed an immensely promising method. The bio-ceramic material Zirconia (ZrO2) has garnered significant attention in the biomimetic scaffolds realm due to its remarkable biocompatibility, superior mechanical strength, and exceptional chemical stability. Numerous examinations have been conducted to investigate the properties and functions of biomimetic structures built from zirconia. Generally, nano-ZrO2 materials have showcased encouraging applications in bone tissue engineering, providing a blend of mechanical robustness, bioactivity, drug delivery capabilities, and antibacterial properties. This review aims to concentrate on the properties and preparations of ZrO2 and its composite materials, while emphasizing its role along with other materials as scaffolds for bone tissue repair applications. The study also discusses the constraints of materials and technology involved in this domain. Ongoing research and development in this area are anticipated to further augment the potential of nano-ZrO2 for advancing bone regeneration therapies.
Collapse
Affiliation(s)
- M V Sivasankar
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India
| | - Madhavi Latha Chinta
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India
| | - P Sreenivasa Rao
- Stem Cell Research Laboratory, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004, India..
| |
Collapse
|
2
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, Del Fabbro M. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1500. [PMID: 32218290 PMCID: PMC7177381 DOI: 10.3390/ma13071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Bioceramic scaffolds are appealing for alveolar bone regeneration, because they are emerging as promising alternatives to autogenous and heterogenous bone grafts. The aim of this systematic review is to answer to the focal question: in critical-sized bone defects in experimental animal models, does the use of a bioceramic scaffolds improve new bone formation, compared with leaving the empty defect without grafting materials or using autogenous bone or deproteinized bovine-derived bone substitutes? Electronic databases were searched using specific search terms. A hand search was also undertaken. Only randomized and controlled studies in the English language, published in peer-reviewed journals between 2013 and 2018, using critical-sized bone defect models in non-medically compromised animals, were considered. Risk of bias assessment was performed using the SYRCLE tool. A meta-analysis was planned to synthesize the evidence, if possible. Thirteen studies reporting on small animal models (six studies on rats and seven on rabbits) were included. The calvarial bone defect was the most common experimental site. The empty defect was used as the only control in all studies except one. In all studies the bioceramic materials demonstrated a trend for better outcomes compared to an empty control. Due to heterogeneity in protocols and outcomes among the included studies, no meta-analysis could be performed. Bioceramics can be considered promising grafting materials, though further evidence is needed.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Sourav Panda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan University, Bhubaneswar, 751003 Odisha, India
| | - Lucia Schiavon
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Stefano Sivolella
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Dental Clinic, I.R.C.C.S. Orthopedic Institute Galeazzi, Via Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
5
|
Aboushelib MN, Shawky R. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles. Int J Implant Dent 2017; 3:21. [PMID: 28527036 PMCID: PMC5438327 DOI: 10.1186/s40729-017-0082-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this study was to evaluate osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with hydroxy apatite used to augment large boney defects in a dog model. Methods Surgical defects were made bilaterally on the lower jaw of 12 Beagle dogs. Cone beam CT images were used to create three dimensional images of the healed defects. Porous zirconia scaffolds were fabricated by milling custom made CAD/CAM blocks into the desired shape. After sintering, the pores of half of the scaffolds were filled with a nano-hydroxy apatite (HA) powder while the other half served as control. The scaffolds were inserted bilaterally in the healed mandibular jaw defects and were secured in position by resorbable fixation screws. After a healing time of 6 weeks, bone-scaffold interface was subjected to histomorphometric analysis to detect the amount of new bone formation. Stained histological sections were analyzed using a computer software (n=12, α=0.05). Mercury porosimetery was used to measure pore sizes, chemical composition was analyzed using energy dispersive x-ray analysis (EDX), and the crystal structure was identified using x-ray diffraction micro-analysis (XRD). Results HA enriched zirconia scaffolds revealed significantly higher volume of new bone formation (33% ± 14) compared to the controls (21% ± 11). New bone deposition started by coating the pore cavity walls and proceeded by filling the entire pore volume. Bone in-growth started from the surface of the scaffold and propagated towards the scaffold core. Islands of entrapped hydroxy apatite particles were observed in mineralized bone matrix. Conclusions Within the limitations of this study, hydroxy apatite enhanced osteogenesis ability of porous zirconia scaffolds.
Collapse
Affiliation(s)
- Moustafa N Aboushelib
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Champollion st, Azarita, Alexandria, Egypt.
| | - Rehab Shawky
- Oral Surgery Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Yang J, Zhang YS, Lei P, Hu X, Wang M, Liu H, Shen X, Li K, Huang Z, Huang J, Ju J, Hu Y, Khademhosseini A. "Steel-Concrete" Inspired Biofunctional Layered Hybrid Cage for Spine Fusion and Segmental Bone Reconstruction. ACS Biomater Sci Eng 2017; 3:637-647. [PMID: 33429631 DOI: 10.1021/acsbiomaterials.6b00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we report a "steel-concrete" inspired layered hybrid spine cage combining a titanium mesh and a bioceramic scaffold, which were welded together through a bioglass bonding layer using a novel multistep manufacturing methodology including three-dimensional slip deposition, gel casting, freeze-drying, and cosintering. The interfacial welding strength achieved 27 ± 0.7 MPa, indicating an excellent structural integrity of the hybrid cage construct. The biocramic scaffold layer consisting of wollastonite and hydroxyapatite had an interconnected, highly porous structure with a pore size of 100-500 μm and a porosity of >85%, well fufilling the structural requirements of bone regeneration. Simulated body fluid immersion assay showed that the hybrid cage exhibited excellent biodegradability to facilitate rapid bone-like apatite formation. In vitro studies demonstrated that the bioceramic scaffold on the hybrid cage supported attachment, spreading, growth, and migration of bone/vessel-forming cells and triggered osteogenic differentiation of human mesenchymal stem cells. In vivo studies further suggested that the bioceramic scaffold on the hybrid cage could actively promote fast generation of new bone tissues within 12 weeks of implantation in a rabbit femoral condyle model. This study has provided a new design and fabrication methodology of hybrid cages by integrating strong mechanical properties with excellent biological activities including osteoinductivity and bone regeneration ability, for spine fusion and segmental bone reconstruction.
Collapse
Affiliation(s)
- Jingzhou Yang
- School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia.,Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pengfei Lei
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Orthopedics Department, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Xiaozhi Hu
- School of Mechanical and Chemical Engineering, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Mian Wang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,School of Chemistry and Chemical Engineering, Guangxi University, 100 University East Road, Nanning, Guangxi 530004, People's Republic of China
| | - Haitao Liu
- School of Materials Sciences and Technology, China University of Geosciences, 29 Xueyuan Road, Beijing 100086, People's Republic of China
| | - Xiulin Shen
- School of Materials Sciences and Technology, China University of Geosciences, 29 Xueyuan Road, Beijing 100086, People's Republic of China
| | - Kun Li
- Orthopedics Department, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Zhaohui Huang
- School of Materials Sciences and Technology, China University of Geosciences, 29 Xueyuan Road, Beijing 100086, People's Republic of China
| | - Juntong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, 696 Fenghe Nan Street, Nanchang, Jiangxi 330063, People's Republic of China
| | - Jie Ju
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yihe Hu
- Orthopedics Department, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Physics, King Abdulaziz University, Abdullah Sulayman Street, Jeddah 21569, Saudi Arabia
| |
Collapse
|