1
|
Abodunrin OD, El Mabrouk K, Bricha M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mater Chem B 2023; 11:955-973. [PMID: 36633185 DOI: 10.1039/d2tb02505a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because of their excellent biologically active qualities, bioactive glasses (BGs) have been extensively used in the biomedical domain, leading to better tissue-implant interactions and promoting bone regeneration and wound healing. Aside from having attractive characteristics, BGs are appealing as a porous scaffold material. On the other hand, such porous scaffolds should enable tissue proliferation and integration with the natural bone and neighboring soft tissues and degrade at a rate that allows for new bone development while preventing bacterial colonization. Therefore, researchers have recently become interested in a different BG composition based on borate (B2O3) rather than silicate (SiO2). Furthermore, apatite synthesis in the borate-based bioactive glass (BBG) is faster than in the silicate-based bioactive glass, which slowly transforms to hydroxyapatite. This low chemical durability of BBG indicates a fast degradation process, which has become a concern for their utilization in biological and biomedical applications. To address these shortcomings, glass network modifiers, active ions, and other materials can be combined with BBG to improve the bioactivity, mechanical, and regenerative properties, including its degradation potential. To this end, this review article will highlight the details of BBGs, including their structure, properties, and medical applications, such as bone regeneration, wound care, and dental/bone implant coatings. Furthermore, the mechanism of BBG surface reaction kinetics and the role of doping ions in controlling the low chemical durability of BBG and its effects on osteogenesis and angiogenesis will be outlined.
Collapse
Affiliation(s)
- Oluwatosin David Abodunrin
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| | - Khalil El Mabrouk
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| | - Meriame Bricha
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| |
Collapse
|
2
|
Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Matinmanesh A, Li Y, Nouhi A, Zalzal P, Schemitsch E, Towler M, Papini M. Evaluating the critical strain energy release rate of bioactive glass coatings on Ti6Al4V substrates after degradation. J Mech Behav Biomed Mater 2018; 78:273-281. [DOI: 10.1016/j.jmbbm.2017.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
4
|
Dai H, Lu X, Peng Y, Yang Z, Zhsssu H. Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5791-5799. [PMID: 28054266 DOI: 10.1007/s11356-016-8236-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 05/13/2023]
Abstract
The HAP crystallization for phosphorus removal from wastewater contributes to an environmental friendly production due to the fact that it helps reduce or eliminate the water eutrophication as well as increases the recovery of mineral resources. However, the generated microcrystalline with poor settleability in high levels of supersaturation solution has a negative effect on the phosphorus recovery efficiency. To overcome the drawback, multiple reagent feed ports (four feed ports) and different recirculation ratio (1.0, 1.5, 2.0, 2.5, 3.0) were investigated to control the levels of supersaturation in an air-agitated reactor with calcite as seeds. Results showed that the approach of multiple reagent feed ports could improve the conversion ratio of orthophosphate, but it had a limited effect (∼3% improvement) on phosphorus recovery efficiency (deposition on the seeds). With the increase of the recirculation ratio, the recovery efficiency was increased gradually and reached an optimal value of 85.63% under the recirculation ratio of 2.5 and four feed ports. This is because the adopted strategies could reduce the level of supersaturation by diluting the concentration of the reagents and inhibit large numbers of microcrystalline coinstantaneous occurrence. Meanwhile, the crystallized products were detected and analyzed by scanning electron micrograph (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD), which were proved to be HAP with a high purity. Collectively, these results demonstrated that supersaturation control using conventional approaches had a limited improvement on the phosphorus recovery efficiency in the form of HAP, and the new control strategies for supersaturation dispersion should be developed in the further study.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing, 210096, China
- ERC Taihu Lake Water Environment, No. 99 Linghu Road, Wuxi, 214135, China
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing, 210096, China.
- ERC Taihu Lake Water Environment, No. 99 Linghu Road, Wuxi, 214135, China.
| | - Yonghong Peng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing, 210096, China
- ERC Taihu Lake Water Environment, No. 99 Linghu Road, Wuxi, 214135, China
| | - Zixuan Yang
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing, 210096, China
- ERC Taihu Lake Water Environment, No. 99 Linghu Road, Wuxi, 214135, China
| | - Huaqing Zhsssu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing, 210096, China
- ERC Taihu Lake Water Environment, No. 99 Linghu Road, Wuxi, 214135, China
| |
Collapse
|
5
|
Icten O, Hosmane NS, Kose DA, Zumreoglu-Karan B. Magnetic nanocomposites of boron and vitamin C. NEW J CHEM 2017. [DOI: 10.1039/c6nj03894h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic nanocomposites of boron and vitamin C for potential targeted delivery/therapy applications are reported here.
Collapse
Affiliation(s)
- Okan Icten
- Nanotechnology and Nanomedicine Division
- Hacettepe University
- 06800 Ankara
- Turkey
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry
- Northern Illinois University
- DeKalb
- USA
| | | | | |
Collapse
|
6
|
Li Y, Stone W, Schemitsch EH, Zalzal P, Papini M, Waldman SD, Towler MR. Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions. J Biomater Appl 2016; 31:674-683. [PMID: 27671104 DOI: 10.1177/0885328216672088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work considered the effect of both increasing additions of Strontium (Sr2+) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B2O3-P2O5-CaCO3-Na2CO3-TiO2-SrCO3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na+, Ca2+ and Sr2+ ions from the glasses with respect to maturation, which indicated that the addition of Sr2+ retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr2+ in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr2+ incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr2+ contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr2+ incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1-7 days) as a result of the dissolution products released.
Collapse
Affiliation(s)
- Yiming Li
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Wendy Stone
- Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | | | - Paul Zalzal
- Oakville Memorial Hospital, Oakville, ON, Canada
| | - Marcello Papini
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Stephen D Waldman
- Chemistry and Biology, Ryerson University, Toronto, ON, Canada Chemical Engineering, Ryerson University, Toronto, ON, Canada
| | - Mark R Towler
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
7
|
Kaur G, Waldrop SG, Kumar V, Pandey OP, Sriranganathan N. An Introduction and History of the Bioactive Glasses. BIOCOMPATIBLE GLASSES 2016. [DOI: 10.1007/978-3-319-44249-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Pramanik C, Wang T, Ghoshal S, Niu L, Newcomb BA, Liu Y, Primus CM, Feng H, Pashley DH, Kumar S, Tay FR. Microfibrous borate bioactive glass dressing sequesters bone-bound bisphosphonate in the presence of simulated body fluid. J Mater Chem B 2015; 3:959-963. [DOI: 10.1039/c4tb02035a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Release of bone-bound bisphosphonates by borate bioactive glass dressings may be useful for managing bisphosphonate-related osteonecrosis of the jaw (BRONJ).
Collapse
Affiliation(s)
- Chandrani Pramanik
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Tianda Wang
- Department of Prosthodontics
- Peking University School and Hospital of Stomatology
- Beijing
- P.R. China
| | - Sushanta Ghoshal
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Lina Niu
- State Key Laboratory of Military Stomatology
- School of Stomatology
- Fourth Military Medical University
- Xi'an
- P.R. China
| | - Bradley A. Newcomb
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Yaodong Liu
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | | | - Hailan Feng
- Department of Prosthodontics
- Peking University School and Hospital of Stomatology
- Beijing
- P.R. China
| | | | - Satish Kumar
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | | |
Collapse
|
9
|
Hasan MS, Werner-Zwanziger U, Boyd D. Composition-structure-properties relationship of strontium borate glasses for medical applications. J Biomed Mater Res A 2014; 103:2344-54. [PMID: 25366812 DOI: 10.1002/jbm.a.35361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 11/06/2022]
Abstract
We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable.
Collapse
Affiliation(s)
- Muhammad S Hasan
- Department of Applied Oral Sciences, School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ulrike Werner-Zwanziger
- Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Boyd
- Department of Applied Oral Sciences, School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Fu Q, Saiz E, Rahaman MN, Tomsia AP. Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2013; 23:5461-5476. [PMID: 29527148 PMCID: PMC5844579 DOI: 10.1002/adfm.201301121] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The need for implants to repair large bone defects is driving the development of porous synthetic scaffolds with the requisite mechanical strength and toughness in vivo. Recent developments in the use of design principles and novel fabrication technologies are paving the way to create synthetic scaffolds with promising potential for reconstituting bone in load-bearing sites. This article reviews the state of the art in the design and fabrication of bioactive glass and ceramic scaffolds that have improved mechanical properties for structural bone repair. Scaffolds with anisotropic and periodic structures can be prepared with compressive strengths comparable to human cortical bone (100-150 MPa), while scaffolds with an isotropic structure typically have strengths in the range of trabecular bone (2-12 MPa). However, the mechanical response of bioactive glass and ceramic scaffolds in multiple loading modes such as flexure and torsion - as well as their mechanical reliability, fracture toughness, and fatigue resistance - has received little attention. Inspired by the designs of natural materials such as cortical bone and nacre, glass-ceramic and inorganic/polymer composite scaffolds created with extrinsic toughening mechanisms are showing potential for both high strength and mechanical reliability. Future research should include improved designs that provide strong scaffolds with microstructures conducive to bone ingrowth, and evaluation of these scaffolds in large animal models for eventual translation into clinical applications.
Collapse
Affiliation(s)
- Qiang Fu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
| | - Eduardo Saiz
- Centre for Advanced Structural Materials, Department of Materials, Imperial College London, London, UK
| | - Mohamed N Rahaman
- Department of Materials Science and Engineering, and Center for Bone and Tissue Repair and Regeneration, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Antoni P Tomsia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)
| |
Collapse
|
11
|
Kaur G, Pandey O, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 2013; 102:254-74. [DOI: 10.1002/jbm.a.34690] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Gurbinder Kaur
- Department of Material Science and Engineering; Holden Hall, Virginia Tech; Blacksburg-24060 Virginia USA
| | - O.P. Pandey
- School of Physics and Materials Science; Thapar University; Patiala-147004, Punjab India
| | - K. Singh
- School of Physics and Materials Science; Thapar University; Patiala-147004, Punjab India
| | - Dan Homa
- Department of Material Science and Engineering; Holden Hall, Virginia Tech; Blacksburg-24060 Virginia USA
| | - Brian Scott
- Department of Material Science and Engineering; Holden Hall, Virginia Tech; Blacksburg-24060 Virginia USA
| | - Gary Pickrell
- Department of Material Science and Engineering; Holden Hall, Virginia Tech; Blacksburg-24060 Virginia USA
| |
Collapse
|
12
|
Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 2013; 65:405-20. [PMID: 22664230 DOI: 10.1016/j.addr.2012.05.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/27/2012] [Accepted: 05/28/2012] [Indexed: 12/28/2022]
Abstract
The role of metal ions in the body and particularly in the formation, regulation and maintenance of bone is only just starting to be unravelled. The role of some ions, such as zinc, is more clearly understood due to its central importance in proteins. However, a whole spectrum of other ions is known to affect bone formation but the exact mechanism is unclear as the effects can be complex, multifactorial and also subtle. Furthermore, a significant number of studies utilise single doses in cell culture medium, whereas the continual, sustained release of an ion may initiate and mediate a completely different response. We have reviewed the role of the most significant ions that are known to play a role in bone formation, namely calcium, zinc, strontium, magnesium, boron, titanium and also phosphate anions as well as copper and its role in angiogenesis, an important process interlinked with osteogenesis. This review will also examine how delivery systems may offer an alternative way of providing sustained release of these ions which may effect and potentiate a more appropriate and rapid tissue response.
Collapse
Affiliation(s)
- Nilay J Lakhkar
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, 256 Gray's Inn Rd, London, WC1X 8LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res A 2012; 100:3267-75. [PMID: 22733586 DOI: 10.1002/jbm.a.34272] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/21/2012] [Accepted: 05/03/2012] [Indexed: 11/06/2022]
Abstract
Bioactive glasses are biocompatible materials that convert to hydroxyapatite in vivo, and potentially support bone formation, but have mainly been available in particulate and not scaffold form. In this study, borosilicate and borate bioactive glass scaffolds were evaluated in critical-sized rat calvarial defects. Twelve-week-old rats were implanted with 45S5 silicate glass particles and scaffolds of 1393 silicate, 1393B1 borosilicate, and 1393B3 borate glass. After 12 weeks, the defects were harvested, stained with hematoxylin and eosin to evaluate bone regeneration, Periodic Acid Schiff to quantitate blood vessel area, and von Kossa and backscatter SEM to estimate newly mineralized bone and hydroxyapatite conversion of bioactive glasses. The amount of new bone was 12.4% for 45S5, 8.5% for 1393, 9.7% for 1393B1, and 14.9% for 1393B3 (*p = 0.04; cf. 1393 and 1393B1). Blood vessel area was significantly higher (p = 0.009) with 45S5 (3.8%), with no differences among 1393 (2.0%), 1393B1 (2.4%), or 1393B3 (2.2%). Percent von Kossa-positive area was 18.7% for 45S5, 25.4% for 1393, 29.5% for 1393B1, and 30.1% for 1393B3, significantly higher (p = 0.014) in 1393B1 and 1393B3 glasses than in 45S5. 45S5 and 1393B3 converted completely to HA in vivo. The 1393B3 glass provided greater bone formation and may be more promising for bone defect repair due to its capacity to be molded into scaffolds. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:3267-3275, 2012.
Collapse
Affiliation(s)
- Lianxiang Bi
- Department of Oral Biology, UMKC School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri 64108-2784, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater 2011; 7:2355-73. [PMID: 21421084 DOI: 10.1016/j.actbio.2011.03.016] [Citation(s) in RCA: 794] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 01/18/2023]
Abstract
This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed.
Collapse
|
15
|
Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. J Biomed Mater Res A 2011; 97:514-35. [DOI: 10.1002/jbm.a.33072] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/23/2010] [Accepted: 01/24/2011] [Indexed: 11/09/2022]
|