Granito RN, Muniz Renno AC, Yamamura H, de Almeida MC, Menin Ruiz PL, Ribeiro DA. Hydroxyapatite from Fish for Bone Tissue Engineering: A Promising Approach.
INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018;
7:80-90. [PMID:
30276163 PMCID:
PMC6148500 DOI:
10.22088/ijmcm.bums.7.2.80]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Natural or synthetic hydroxyapatite (HA) has been frequently used as implant materials for orthopaedic and dental applications, showing excellent bioactivity, adequate mechanical rigidity and structure, osteoconductivity and angiogenic properties, no toxicity, and absence of inflammatory or antigenic reactions. HA can be easily synthesized or extracted from natural sources, such as bovine bone. However, the manufacturing costs to obtain HA are high, restricting the therapy. Herein, much effort has been paid for obtaning alternative natural sources for HA. The potential of HA extracted from skeleton of animals has been investigated. The aim of this review is to exploit the potential of HA derived from fish to fulfill biological activities for bone tissue engineering. In particular, HA from fish is easy to be manufactured regarding the majority of protocols that are based on the calcination method. Furthermore, the composition and structure of HA from fish were evaluated; the biomaterial showed good biocompatibility as a result of non-cytotoxicity and handling properties, demonstrating advantages in comparison with synthetic ones. Interestingly, another huge benefit brought by HA from bone fish is its positive effect for environment since this technique considerably reduces waste. Certainly, the process of transforming fish into HA is an environmentally friendly process and stands as a good chance for reducing costs of treatment in bone repair or replacement with little impact into the environment.
Collapse