1
|
Thi HN, Ngoc SN, Minh TV, Van QL, Bui VTD, Nguyen NH. A heparin-based nanogel system for redox and pH dual-responsive delivery of cisplatin. Biomed Mater 2024; 19:025012. [PMID: 38215488 DOI: 10.1088/1748-605x/ad1dfb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Heparin recently has been discovered as a novel anti-cancer agent. The combinations of heparin with other agents was reported not only to reduce the undesired effects of free heparin and increase the cellular uptake of the delivered molecules, but also is the basis for the design and development of multi-stimulation response systems to improve their killing cancer cell efficiency at the target positions. This study aimed to design a redox and pH dual-responsive anticancer system based on heparin for cisplatin (CPT) therapy. Heparin was first cross-linked with Poloxamer 407 chains via disulfide bridges to form a redox-sensitive system Hep-P407. CPT was then encapsulated into the Hep-P407 system via the complex of Platin and carboxyl groups to form the redox/pH-responsive system CPT@Hep-P407. The obtained Hep-P407 systems were proved and characterized using specific techniques including1H-NMR, zeta potential, Dynamic Light Scattering (DLS) and Fourier-transform infrared spectroscopy. The dual-responsive behavior to redox and pH of CPT@Hep-P407 was proved through DLS, zeta andin vitrorelease analysis meanwhile its cytotoxicity was investigated using Resazurin assay. The CPT@Hep-P407 system is expected to be a promising redox/pH-responsive anticancer system based on heparin for CPT therapy.
Collapse
Affiliation(s)
- Huong Nguyen Thi
- Institute of Chemistry and Materials, Academy of Military Science and Technology (Vietnam), 17 Hoang Sam, Cau Giay, Hanoi 100000, Vietnam
| | - Son Nguyen Ngoc
- Institute of Chemistry and Materials, Academy of Military Science and Technology (Vietnam), 17 Hoang Sam, Cau Giay, Hanoi 100000, Vietnam
| | - Thanh Vu Minh
- Institute of Chemistry and Materials, Academy of Military Science and Technology (Vietnam), 17 Hoang Sam, Cau Giay, Hanoi 100000, Vietnam
| | - Quan Le Van
- Functional Diagnostics Department, Military Hospital 103, Vietnam Military Medical University, Phung Hung, Ha Dong, Hanoi 100000, Vietnam
| | - Vu Thuy Duong Bui
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Hoi Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
3
|
Lupu A, Rosca I, Gradinaru VR, Bercea M. Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers (Basel) 2023; 15:polym15020355. [PMID: 36679236 PMCID: PMC9861663 DOI: 10.3390/polym15020355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Different formulations containing Pluronic F127 and polysaccharides (chitosan, sodium alginate, gellan gum, and κ-carrageenan) were investigated as potential injectable gels that behave as free-flowing liquid with reduced viscosity at low temperatures and displayed solid-like properties at 37 °C. In addition, ZnO nanoparticles, lysozyme, or curcumin were added for testing the antimicrobial properties of the thermal-sensitive gels. Rheological investigations evidenced small changes in transition temperature and kinetics of gelation at 37 °C in presence of polysaccharides. However, the gel formation is very delayed in the presence of curcumin. The antimicrobial properties of Pluronic F127 gels are very modest even by adding chitosan, lysozyme, or ZnO nanoparticles. A remarkable enhancement of antimicrobial activity was observed in the presence of curcumin. Chitosan addition to Pluronic/curcumin systems improves their viscoelasticity, antimicrobial activity, and stability in time. The balance between viscoelastic and antimicrobial characteristics needs to be considered in the formulation of Pluronic F127 gels suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| |
Collapse
|
4
|
Deng S, Gigliobianco MR, Mijit E, Minicucci M, Cortese M, Campisi B, Voinovich D, Battistelli M, Salucci S, Gobbi P, Lupidi G, Zambito G, Mezzanotte L, Censi R, Di Martino P. Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox-Responsive Degradability for Intracellular Delivery. Pharmaceutics 2021; 13:pharmaceutics13122048. [PMID: 34959330 PMCID: PMC8708258 DOI: 10.3390/pharmaceutics13122048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions. The surface and core-shell morphology of the nanohydrogel were observed by scanning electron microscope, transmission electron microscopy, and further confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy from the standpoint of chemical composition. The redox-responsive biodegradability of the nanohydrogel in reducing environments was determined using glutathione as reducing agent. A nanohydrogel with particle size around 250 nm and polydispersity index around 0.1 is characterized by a thermosensitive shell which jellifies at body temperature and crosslinks at the interface of a redox-responsive hyaluronic acid core via the Michael addition reaction. The nanohydrogel showed good encapsulation efficiency for model macromolecules of different molecular weight (93% for cytochrome C, 47% for horseradish peroxidase, and 90% for bovine serum albumin), capacity to retain the peroxidase-like enzymatic activity (around 90%) of cytochrome C and horseradish peroxidase, and specific redox-responsive release behavior. Additionally, the nanohydrogel exhibited excellent cytocompatibility and internalization efficiency into macrophages. Therefore, the developed core-shell structure nanohydrogel can be considered a promising tool for the potential intracellular delivery of different pharmaceutical applications, including for cancer therapy.
Collapse
Affiliation(s)
- Siyuan Deng
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | | | - Emin Mijit
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (E.M.); (M.M.)
| | - Marco Minicucci
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (E.M.); (M.M.)
| | - Manuela Cortese
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | - Barbara Campisi
- Department of Economic, Business, Mathematic and Statistical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Science, University of Trieste, P. le Europa 1, 34127 Trieste, Italy;
| | - Michela Battistelli
- Institute of Morphological Sciences, University of Urbino, Via Ca’ le Suore 2, 61029 Urbino, Italy; (M.B.); (P.G.)
| | - Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Pietro Gobbi
- Institute of Morphological Sciences, University of Urbino, Via Ca’ le Suore 2, 61029 Urbino, Italy; (M.B.); (P.G.)
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (L.M.)
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (G.Z.); (L.M.)
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (S.D.); (M.C.); (G.L.)
- Correspondence: ; Tel.: +39-0737-40-2231
| | - Piera Di Martino
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, Via dei Vestini, 1, 66100 Chieti, Italy;
| |
Collapse
|
5
|
Le NTT, Nguyen TNQ, Cao VD, Hoang DT, Ngo VC, Hoang Thi TT. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019; 11:E591. [PMID: 31717376 PMCID: PMC6920789 DOI: 10.3390/pharmaceutics11110591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that nanocarriers as drug delivery systems overcome the limitation of chemotherapy, the leakage of encapsulated drugs during the delivery process to the target site can still cause toxic effects to healthy cells in other tissues and organs in the body. Controlling drug release at the target site, responding to stimuli that originated from internal changes within the body, as well as stimuli manipulated by external sources has recently received significant attention. Owning to the spherical shape and porous structure, dendrimer is utilized as a material for drug delivery. Moreover, the surface region of dendrimer has various moieties facilitating the surface functionalization to develop the desired material. Therefore, multi-stimuli-responsive dendrimers or 'smart' dendrimers that respond to more than two stimuli will be an inspired attempt to achieve the site-specific release and reduce as much as possible the side effects of the drug. The aim of this review was to delve much deeper into the recent progress of multi-stimuli-responsive dendrimers in the delivery of anticancer drugs in addition to the major potential challenges.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Duc Thuan Hoang
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Cuong Ngo
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
6
|
Chiriac AP, Ghilan A, Neamtu I, Nita LE, Rusu AG, Chiriac VM. Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromol Biosci 2019; 19:e1900187. [PMID: 31373753 DOI: 10.1002/mabi.201900187] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Indexed: 01/06/2025]
Abstract
(Nano)gels from macromolecular compounds-natural, synthetic, or a combination thereof, suitable crosslinkers-and conferred characteristics-such as degradability, size, charge, amphiphilicity, responsiveness, and softness-are capable of responding to the challenges imposed by bioengineering applications. Polysaccharide-based gels have received particular attention in this field. This review addresses recent advancement in the use of (nano)gel structures prepared only from compounds based on gellan gum, heparin, chondroitin sulfate, carrageenan, guar gum, galactose, or agarose, which represent an important part of the special class of natural polymers, the polysaccharides. Also, future trends are taken into discussion regarding the (nano)gels' use in biomedical applications such as biomimetics, biosensors, artificial muscles, and chemical separations in relation with their ability to be used as a vehicle for various biomolecules due to their physicochemical properties, biocompatibility, and biodegradability.
Collapse
Affiliation(s)
- Aurica P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Alina Ghilan
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Iordana Neamtu
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Loredana E Nita
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Alina G Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Vlad Mihai Chiriac
- "Gh. Asachi" Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I no. 11A, 700506, Iaşi, Romania
| |
Collapse
|
7
|
Thanh VM, Bui LM, Bach LG, Nguyen NT, Thi HL, Hoang Thi TT. Origanum majorana L. Essential Oil-Associated Polymeric Nano Dendrimer for Antifungal Activity against Phytophthora infestans. MATERIALS 2019; 12:ma12091446. [PMID: 31060208 PMCID: PMC6539362 DOI: 10.3390/ma12091446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/13/2023]
Abstract
In this study, the introduction of Origanum majorana L. essential oil into a polyamidoamine (PAMAM) G4.0 dendrimer was performed for creation of a potential nanocide against Phytophthora infestans. The characteristics of marjoram oil and PAMAM G4.0 was analyzed using transmission electron spectroscopy (TEM), nuclear magnetic resonance spectroscopy (1H-NMR) and gas chromatography mass spectrometry (GC-MS). The success of combining marjoram oil with PAMAM G4.0 was evaluated by FT-IR, TGA analysis, and the antifungal activity of this system was also investigated. The results showed that the antifungal activity of oil/PAMAM G4.0 was high and significantly higher than only PAMAM G4.0 or marjoram essential oil. These results indicated that the nanocide oil/PAMAM G4.0 helped strengthen and prolong the antifungal properties of the oil.
Collapse
Affiliation(s)
- Vu Minh Thanh
- Institute of Chemistry and Materials, 17 Hoang Sam, Cau Giay, Hanoi 100000, Vietnam.
| | - Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Vietnam.
| | - Long Giang Bach
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Vietnam.
- Center of Excellence for Functional Polymers and NanoEngineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Ngoc Tung Nguyen
- Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 100000, Vietnam.
| | - Hoa Le Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam.
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam.
| |
Collapse
|
8
|
Nurunnabi M, Khatun Z, Badruddoza AZM, McCarthy JR, Lee YK, Huh KM. Biomaterials and Bioengineering Approaches for Mitochondria and Nuclear Targeting Drug Delivery. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Md Nurunnabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Zehedina Khatun
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 United States
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219 United States
| | - Jason R. McCarthy
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-706, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
9
|
Efficient Self-Assembly of mPEG End-Capped Porous Silica as a Redox-Sensitive Nanocarrier for Controlled Doxorubicin Delivery. Int J Biomater 2018; 2018:1575438. [PMID: 29686706 PMCID: PMC5852890 DOI: 10.1155/2018/1575438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/24/2018] [Indexed: 11/17/2022] Open
Abstract
Porous nanosilica (PNS) has been regarded as a promising candidate for controlled delivery of anticancer drugs. Unmodified PNS-based nanocarriers, however, showed a burst release of encapsulated drugs, which may limit their clinical uses. In this report, PNS was surface conjugated with adamantylamine (ADA) via disulfide bridges (-SS-), PNS-SS-ADA, which was further modified with cyclodextrin-poly(ethylene glycol) methyl ether conjugate (CD-mPEG) to form a core@shell structure PNS-SS-ADA@CD-mPEG for redox triggered delivery of doxorubicin (DOX), DOX/PNS-SS-ADA@CD-mPEG. The prepared PNS-SS-ADA@CD-mPEG nanoparticles were spherical in shape with an average diameter of 55.5 ± 3.05 nm, a little larger than their parentally PNS nanocarriers, at 49.6 ± 2.56 nm. In addition, these nanoparticles possessed high drug loading capacity, at 79.2 ± 3.2%, for controlled release. The release of DOX from DOX/PNS-SS-ADA@CD-mPEG nanoparticles was controlled and prolonged up to 120 h in PBS medium (pH 7.4), compared to less than 40 h under reducing condition of 5 mM DTT. Notably, the PNS-SS-ADA@CD-mPEG was a biocompatible nanocarrier, and the toxicity of DOX was dramatically reduced after loading drugs into the porous core. This redox-sensitive PNS-SS-ADA@CD-mPEG nanoparticle could be considered a potential candidate with high drug loading capacity and a lower risk of systemic toxicity.
Collapse
|
10
|
Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. J Control Release 2018; 272:114-144. [DOI: 10.1016/j.jconrel.2017.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/09/2023]
|
11
|
Wang H, Cheng F, He W, Zhu J, Cheng G, Qu J. Poly(ethylene) glycol hydrogel based on oxa-Michael reaction: Precursor synthesis and hydrogel formation. Biointerphases 2017; 12:02C414. [PMID: 28571325 PMCID: PMC5453855 DOI: 10.1116/1.4984305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 01/16/2023] Open
Abstract
This paper reported a facile strategy for the one-pot synthesis of vinyl sulfone (VS) group terminated hydrogel precursors [poly(ethylene) glycol (PEG)-VS] and PEG hydrogels via catalytic oxa-Michael reaction. Nine potential catalysts were investigated for the reaction between PEG and divinyl sulfone, among which 4-dimethylaminopyridine (DMAP) prevailed for its high catalytic activity. DMAP produced PEG-VS with a conversion of more than 90% in 2 h under a solvent-free condition at room temperature, which significantly simplifies the synthesis of PEG-VS. The preparation of PEG hydrogels was realized by adding glycerol as a crosslinker, and the physical and the mechanical properties were easily controlled by changing the crosslinker concentration as well as the PEG chain length. This strategy can also be applied to other polyhydroxy compounds as crosslinkers, and thus, a library of hydrogels with designed structures and desired properties could be prepared. The PEG hydrogels showed good antifouling properties, low cytotoxicity, and ability to release drugs at a tunable rate, indicating versatile potential bioapplications.
Collapse
Affiliation(s)
- Hanqi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China and School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China and School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China and Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Jiaohui Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China and School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
12
|
Development and In Vitro Evaluation of Liposomes Using Soy Lecithin to Encapsulate Paclitaxel. Int J Biomater 2017; 2017:8234712. [PMID: 28331495 PMCID: PMC5346369 DOI: 10.1155/2017/8234712] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022] Open
Abstract
The formulation of a potential delivery system based on liposomes (Lips) formulated from soy lecithin (SL) for paclitaxel (PTX) was achieved (PTX-Lips). At first, PTX-Lips were prepared by thin film method using SL and cholesterol and then were characterized for their physiochemical properties (particle size, polydispersity index, zeta potential, and morphology). The results indicated that PTX-Lips were spherical in shape with a dynamic light scattering (DLS) particle size of 131 ± 30.5 nm. Besides, PTX was efficiently encapsulated in Lips, 94.5 ± 3.2% for drug loading efficiency, and slowly released up to 96 h, compared with free PTX. More importantly, cell proliferation kit I (MTT) assay data showed that Lips were biocompatible nanocarriers, and in addition the incorporation of PTX into Lips has been proven successful in reducing the toxicity of PTX. As a result, development of Lips using SL may offer a stable delivery system and promising properties for loading and sustained release of PTX in cancer therapy.
Collapse
|
13
|
Yang X, Cai X, Yu A, Xi Y, Zhai G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J Colloid Interface Sci 2017; 496:311-326. [PMID: 28237749 DOI: 10.1016/j.jcis.2017.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023]
Abstract
To remedy the problems riddled in cancer chemotherapy, such as poor solubility, low selectivity, and insufficient intra-cellular release of drugs, novel heparin-based redox-sensitive polymeric nanoparticles were developed. The amphiphilic polymer, heparin-alpha-tocopherol succinate (Hep-cys-TOS) was synthesized by grafting hydrophobic TOS to heparin using cystamine as the redox-sensitive linker, which could self-assemble into nanoparticles in phosphate buffer saline (PBS) with low critical aggregation concentration (CAC) values ranging from 0.026 to 0.093mg/mL. Paclitaxel (PTX)-loaded Hep-cys-TOS nanoparticles were prepared via a dialysis method, exhibiting a high drug-loading efficiency of 18.99%. Physicochemical properties of the optimized formulation were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). Subsequently, the redox-sensitivity of Hep-cys-TOS nanoparticles was confirmed by the changes in size distribution, morphology and appearance after dithiothreitol (DTT) treatment. Besides, the in vitro release of PTX from Hep-cys-TOS nanoparticles also exhibited a redox-triggered profile. Also, the uptake behavior and pathways of coumarin 6-loaded Hep-cys-TOS nanoparticles were investigated, suggesting the nanoparticles could be taken into MCF-7 cells in energy-dependent, caveolae-mediated and cholesterol-dependent endocytosis manners. Later, MTT assays of different PTX-free and PTX-loaded formulations revealed the desirable safety of PTX-free nanoparticles and the enhanced anti-cancer activity of PTX-loaded Hep-cys-TOS nanoparticles (IC50=0.79μg/mL). Apoptosis study indicated the redox-sensitive formulation could induce more apoptosis of MCF-7 cells than insensitive one (55.2% vs. 41.7%), showing the importance of intracellular burst release of PTX. Subsequently, the hemolytic toxicity confirmed the safety of the nanoparticles for intravenous administration. The results indicated the developed redox-sensitive nanoparticles were promising as intracellular drug delivery vehicles for cancer treatment.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaoqing Cai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
14
|
Redox and pH Responsive Poly (Amidoamine) Dendrimer-Heparin Conjugates via Disulfide Linkages for Letrozole Delivery. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8589212. [PMID: 28246606 PMCID: PMC5299214 DOI: 10.1155/2017/8589212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022]
Abstract
Heparin (Hep) conjugated to poly (amidoamine) dendrimer G3.5 (P) via redox-sensitive disulfide bond (P-SS-Hep) was studied. The redox and pH dual-responsive nanocarriers were prepared by a simple method that minimized many complex steps as previous studies. The functional characterization of G3.5 coated Hep was investigated by the proton nuclear magnetic resonance spectroscopy. The size and formation were characterized by the dynamic light scattering, zeta potential, and transmission electron microscopy. P-SS-Hep was spherical in shape with average diameter about 11 nm loaded with more than 20% letrozole. This drug carrier could not only eliminate toxicity to cells and improve the drugs solubility but also increase biocompatibility of the system under reductive environment of glutathione. In particular, P-SS-Hep could enhance the effectiveness of cancer therapy after removing Hep from the surface. These results demonstrated that the P-SS-Hep conjugates could be a promising candidate as redox and pH responsive nanocarriers for cancer chemotherapy.
Collapse
|
15
|
Nguyen Thi TT, Tran TV, Tran NQ, Nguyen CK, Nguyen DH. Hierarchical self-assembly of heparin-PEG end-capped porous silica as a redox sensitive nanocarrier for doxorubicin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:947-954. [DOI: 10.1016/j.msec.2016.04.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/28/2016] [Accepted: 04/24/2016] [Indexed: 11/30/2022]
|
16
|
Debele TA, Mekuria SL, Tsai HC. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:964-981. [PMID: 27524098 DOI: 10.1016/j.msec.2016.05.121] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022]
|
17
|
Mavuso S, Choonara YE, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD, Pillay V. A dual pH/Redox responsive copper-ligand nanoliposome bioactive complex for the treatment of chronic inflammation. Int J Pharm 2016; 509:348-359. [PMID: 27269194 DOI: 10.1016/j.ijpharm.2016.05.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 01/12/2023]
Abstract
A novel dual pH/redox-responsive polymeric nanoliposome system (NLs) loaded with a copper-liganded bioactive complex was prepared and designed as a controlled delivery system for the management of inflammation. The NLs were synthesised after preparation of the copper-glyglycine-prednisolone succinate] ([(Cu(glygly)(PS)]) complex, and the dual pH/redox responsive biopolymer respectively. The methodology undertaken for the development of the drug delivery system involved coordination of the bioactive to Copper (II), preparation of dual pH/redox responsive biopolymer, and the synthesis of dual pH/redox nanoliposomes. Characterisations of the prepared copper-liganded bioactive [Copper-glyglycine-prednisolone succinate] ([(Cu(glygly)(PS)]) complex, dual pH/redox responsive biopolymer (Eudragit E100-cystamine) and [(Cu(glygly)(PS)]-loaded NLs were carried out using spectroscopic and physicochemical techniques. Results indicated a high inflammatory/oxidant inhibitory activity of [Cu(glygly)(PS)] in comparison to the free PS drug. The [Cu(glygly)(PS)] complex exhibited a significant free radical-scavenging activity (60.1±1.2%) and lipoxygenase (LOX-5) inhibitory activity (36.6±1.3%) in comparison to PS which resulted in activity of 4.4±1.4% and inhibition of 6.1±2.6% respectively. The [Cu(glygly)(PS)] loaded NLs demonstrated low release profiles of 22.9±5.4% in 6h at pH 7.4, in comparison to a significant accelerated release at pH 5 in a reducing environment of 75.9±3.7% over 6h duration. Results suggest that the novel copper-liganded bioactive delivery system with controlled drug release mechanism could serve as a potential drug delivery system candidate in the management of inflammation.
Collapse
Affiliation(s)
- Simphiwe Mavuso
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
18
|
Nguyen DH, Lee JS, Choi JH, Park KM, Lee Y, Park KD. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery. Acta Biomater 2016; 35:109-17. [PMID: 26884278 DOI: 10.1016/j.actbio.2016.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/14/2022]
Abstract
Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. STATEMENT OF SIGNIFICANCE In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be readily controlled by varying the SPIO/PEG ratio in the assemblies, and also demonstrated significant improvement of the functional nanoparticles for theranostic systems; enhanced magnetic resonance, improved cellular uptake, and efficient PTX loading and sustained release at the desired time point. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy.
Collapse
Affiliation(s)
- Dai Hai Nguyen
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Jung Seok Lee
- Biomedical Engineering, Yale University, CT 06511, USA
| | - Jong Hoon Choi
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea.
| |
Collapse
|
19
|
Liang K, Ng S, Lee F, Lim J, Chung JE, Lee SS, Kurisawa M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater 2016; 33:142-52. [PMID: 26785145 DOI: 10.1016/j.actbio.2016.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/31/2015] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
A novel ternary nanogel based on the self-assembly of hyaluronic acid-epigallocatechin gallate conjugates (HA-EGCG), linear polyethylenimine (PEI) and Granzyme B (GzmB) in an aqueous environment was developed for the targeted intracellular delivery of GzmB into cancer cells. Lysozyme-encapsulated HA-EGCG nanogels were first prepared and characterized. HA-EGCG nanogels exhibited smaller particle sizes and a more homogeneous size distribution than the HA counterpart. Fluorescence quenching and lysozyme activity studies revealed that EGCG moieties facilitated protein binding through physical interactions and led to the formation of stable nanogels. When CD44-overexpressing HCT-116 colon cancer cells were treated with GzmB-encapsulated HA-EGCG nanogels in vitro, a significant cytotoxic effect was observed. Caspase assays and intracellular trafficking studies confirmed that cell death was due to apoptosis triggered by the delivery of GzmB to the cytosol of those cells. In comparison, little cytotoxic effect was observed in CD44-deficient cells treated with GzmB-encapsulated HA-EGCG nanogels. This study highlights the potential utility of HA-EGCG as effective intracellular protein carriers for targeted cancer therapy. STATEMENT OF SIGNIFICANCE Intracellularly activated cytotoxic proteins can be used to kill cancer cells but viable carriers for such proteins are lacking. In this work, we developed novel nanogels based on selfassembly of hyaluronic acid (HA)-(-)-epigallocatechin-3-gallate (EGCG) conjugates, linear polyethylenemine (PEI) and the cytotoxic protein Granzyme B (GzmB) for the intracellular delivery of GzmB for cancer therapy. HA was exploited for its ability to target CD44 which are overexpressed in many types of cancer cells, while EGCG, the main component of green tea catechins, was chosen for its ability to bind to proteins. Characterization studies showed that EGCG facilitated protein complexation through physical interactions and led to the formation of stable nanogels. HA-EGCG nanogels were able to achieve CD44 targeted killing of HCT-116 cancer cells by delivering GzmB into the cytosol of these cells. We believe that the applications of the HA-EGCG nanogels can be expanded to the intracellular delivery of other cytotoxic protein drugs for cancer therapy.
Collapse
Affiliation(s)
- Kun Liang
- Institute of Bioengineering & Nanotechnology (IBN), 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore
| | - Shengyong Ng
- Institute of Bioengineering & Nanotechnology (IBN), 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore
| | - Fan Lee
- Institute of Bioengineering & Nanotechnology (IBN), 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore
| | - Jaehong Lim
- Institute of Bioengineering & Nanotechnology (IBN), 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore
| | - Joo Eun Chung
- Institute of Bioengineering & Nanotechnology (IBN), 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore
| | - Su Seong Lee
- Institute of Bioengineering & Nanotechnology (IBN), 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering & Nanotechnology (IBN), 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore.
| |
Collapse
|
20
|
Nguyen DH, Lee JS, Bae JW, Choi JH, Lee Y, Son JY, Park KD. Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. Int J Pharm 2015; 495:329-335. [DOI: 10.1016/j.ijpharm.2015.08.083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022]
|
21
|
Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015; 115:8564-608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Dina Maciel
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| |
Collapse
|
22
|
|
23
|
Yang X, Du H, Liu J, Zhai G. Advanced Nanocarriers Based on Heparin and Its Derivatives for Cancer Management. Biomacromolecules 2015; 16:423-36. [DOI: 10.1021/bm501532e] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoye Yang
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Hongliang Du
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jiyong Liu
- Department
of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guangxi Zhai
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
Design and processing of nanogels as delivery systems for peptides and proteins. Ther Deliv 2014; 5:691-708. [DOI: 10.4155/tde.14.38] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanogels, cross-linked networks of >1 μm in size, are attractive drug-delivery systems, as they not only possess the potential advantages of nanoscale formulations, but also the attractive abilities of a hydrogel; high hydrophilicity, high loading capacity and the potential for biocompatibility and controlled release. The focus of this review is to provide an overview of the recent developments within the nanogel field, and how the chemical design of the nanogel polymer has been found to influence the properties of the nanogel system. Novel nanogel systems are discussed with respect to their type of cross-linkage and their suitability as therapeutic delivery systems, as well as their ability to stabilize the protein/peptide drug.
Collapse
|
25
|
Park KM, Son JY, Choi JH, Kim IG, Lee Y, Lee JY, Park KD. Macro/Nano-Gel Composite as an Injectable and Bioactive Bulking Material for the Treatment of Urinary Incontinence. Biomacromolecules 2014; 15:1979-84. [DOI: 10.1021/bm401787u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kyung Min Park
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Joo Young Son
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Jong Hoon Choi
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - In Gul Kim
- Department
of Urology, Catholic University, Seoul St. Mary’s Hospital, Seoul 137-701, Republic of Korea
| | - Yunki Lee
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Ji Youl Lee
- Department
of Urology, Catholic University, Seoul St. Mary’s Hospital, Seoul 137-701, Republic of Korea
| | - Ki Dong Park
- Department
of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| |
Collapse
|
26
|
Zhao YZ, Lv HF, Lu CT, Chen LJ, Lin M, Zhang M, Jiang X, Shen XT, Jin RR, Cai J, Tian XQ, Wong HL. Evaluation of a novel thermosensitive heparin-poloxamer hydrogel for improving vascular anastomosis quality and safety in a rabbit model. PLoS One 2013; 8:e73178. [PMID: 24015296 PMCID: PMC3755001 DOI: 10.1371/journal.pone.0073178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/17/2013] [Indexed: 01/28/2023] Open
Abstract
Despite progress in the design of advanced surgical techniques, stenosis recurs in a large percentage of vascular anastomosis. In this study, a novel heparin-poloxamer (HP) hydrogel was designed and its effects for improving the quality and safety of vascular anastomosis were studied. HP copolymer was synthesized and its structure was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H-NMR). Hydrogels containing HP were prepared and their important characteristics related to the application in vascular anastomosis including gelation temperature, rheological behaviour and micromorphology were measured. Vascular anastomosis were performed on the right common carotid arteries of rabbits, and the in vivo efficiency and safety of HP hydrogel to achieve vascular anastomosis was verified and compared with Poloxamer 407 hydrogel and the conventional hand-sewn method using Doppler ultrasound, CT angiograms, scanning electron microscopy (SEM) and histological technique. Our results showed that HP copolymer displayed special gel-sol-gel phase transition behavior with increasing temperature from 5 to 60 °C. HP hydrogel prepared from 18 wt% HP solution had a porous sponge-like structure, with gelation temperature at approximately 38 °C and maximum elastic modulus at 10,000 Pa. In animal studies, imaging and histological examination of rabbit common jugular artery confirmed that HP hydrogel group had similar equivalent patency, flow and burst strength as Poloxamer 407 group. Moreover, HP hydrogel was superior to poloxamer 407 hydrogel and hand-sewn method for restoring the functions and epithelial structure of the broken vessel junctions after operation. By combining the advantages of heparin and poloxamer 407, HP hydrogel holds high promise for improving vascular anastomosis quality and safety.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Hai-Feng Lv
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- * E-mail: (CTL); (XQT); (HLW)
| | - Li-Juan Chen
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Min Lin
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ming Zhang
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xi Jiang
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Tong Shen
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Rong-Rong Jin
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jun Cai
- Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Xin-Qiao Tian
- Department of Ultrasonography, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (CTL); (XQT); (HLW)
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CTL); (XQT); (HLW)
| |
Collapse
|
27
|
Nguyen DH, Bae JW, Choi JH, Lee JS, Park KD. Bioreducible cross-linked Pluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513491642] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bioreducible are described here, cross-linked Pluronic micelles carrying doxorubicin (DOX) for folate-mediated cancer targeting. The amine-terminated Pluronic® F-127 was functionalized by grafting acrylic acid (AA) to the hydrophobic block (AA-Pluronic-NH2). Folic acid (FA), hydrazine (H), and cystamine (C) were sequentially conjugated to AA-Pluronic-NH2, followed by DOX conjugation via an acid-labile hydrazone bond (FA-Pluronic-C/H-DOX). The DOX content was approximately 143 µg/mg of polymer. We prepared bioreducible cross-linked micelles using FA-Pluronic-C/H-DOX, which had a diameter of 156.1 nm. After incubation for 24 h with 10 mM of dithiothreitol, the micelle size decreased dramatically to 87.6 nm with a broad distribution, indicating that disulfide bonds in the micelle core were reductively cleaved. In vitro release data showed that the conjugated DOX was released slowly from the FA-Pluronic C/H-DOX micelles at pH 7.4, whereas there was a rapid DOX release at pH 5.2. Confocal images of HeLa cells showed enhanced cellular uptake of FA-Pluronic-C/H-DOX micelles as compared to nontargeted Pluronic-C/H-DOX micelles. The FA-Pluronic-C/H-DOX micelles killed more cells than the nontargeted micelles, but the cytotoxic effect was not as significant as free DOX. Additionally, micelles without DOX were not cytotoxic. On the basis of these results, pH- and redox potential–responsive FA-Pluronic-C/H-DOX micelles could potentially function as cancer-targeted and controlled DOX delivery systems.
Collapse
Affiliation(s)
- Dai Hai Nguyen
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jin Woo Bae
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jong Hoon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jung Seok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
28
|
Polysaccharide-based micelles for drug delivery. Pharmaceutics 2013; 5:329-52. [PMID: 24300453 PMCID: PMC3834947 DOI: 10.3390/pharmaceutics5020329] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022] Open
Abstract
Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.
Collapse
|
29
|
Affiliation(s)
- Smriti Singh
- DWI an der RWTH Aachen e.V. Functional and Interactive Polymers and Institute for Technical and Macromolecular Chemistry, RWTH Aachen University; 52056 Aachen Germany
| | - Martin Möller
- DWI an der RWTH Aachen e.V. Functional and Interactive Polymers and Institute for Technical and Macromolecular Chemistry, RWTH Aachen University; 52056 Aachen Germany
| | - Andrij Pich
- DWI an der RWTH Aachen e.V. Functional and Interactive Polymers and Institute for Technical and Macromolecular Chemistry, RWTH Aachen University; 52056 Aachen Germany
| |
Collapse
|
30
|
Wang ZK, Wang LH, Sun JT, Han LF, Hong CY. In situ generation of bioreducible and acid labile nanogels/microgels simply via adding water into the polymerization system. Polym Chem 2013. [DOI: 10.1039/c2py21058d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Poly(l-aspartic acid) nanogels for lysosome-selective antitumor drug delivery. Colloids Surf B Biointerfaces 2013; 101:298-306. [DOI: 10.1016/j.colsurfb.2012.07.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/21/2023]
|
32
|
Tang S, Zhao J, Xu S, Li J, Teng Y, Quan D, Guo X. Bone induction through controlled release of novel BMP-2-related peptide from PTMC₁₁-F127-PTMC₁₁ hydrogels. Biomed Mater 2012; 7:015008. [PMID: 22287556 DOI: 10.1088/1748-6041/7/1/015008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic protein 2 (BMP-2) is the most powerful osteogenic factor; its effectiveness in enhancing osteoblastic activation has been confirmed both in vitro and in vivo. We developed a novel peptide (designated P24) derived from the 'knuckle' epitope of BMP-2 and found it also had osteogenic bioactivity to some extent. The main objective of this study was to develop a controlled release system based on poly(trimethylene carbonate)-F127-poly(trimethylene carbonate) (PTMC₁₁-F127-PTMC₁₁) hydrogels for the P24 peptide, to promote bone formation. By varying the copolymer concentrations, we demonstrated that P24/PTMC₁₁-F127-PTMC₁₁ hydrogels were an efficient system for the sustained release of P24 over 21-35 days. The P24-loaded hydrogels elevated alkaline phosphatase activity and promoted the expression of osteocalcin mRNA in bone marrow stromal cells (BMSCs) in vitro. Radiographic and histological examination showed that P24-loaded hydrogels could induce more effective ectopic bone formation in vivo than P24-free hydrogels. These results indicate that the PTMC₁₁-F127-PTMC₁₁ hydrogel is a suitable carrier for the controlled release of P24, and is a promising injectable biomaterial for the induction of bone regeneration.
Collapse
Affiliation(s)
- Shuo Tang
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|