1
|
Grosfeld EC, van Dijk NWM, Ulrich DJO, Mikos AG, Jansen JA, van den Beucken JJJP. Compositional Variations in Calcium Phosphate Cement and Poly(Lactic-Co-Glycolic-Acid) Porogens Do Not Affect the Orthotopic Performance of Calcium Phosphate Cement/Poly(Lactic-Co-Glycolic-Acid) Cements. J Biomed Mater Res A 2025; 113:e37827. [PMID: 39473125 DOI: 10.1002/jbm.a.37827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 12/26/2024]
Abstract
Calcium phosphate cement (CPC) has evolved as an appealing bone substitute material, especially since CPCs were combined with poly(lactic-co-glycolic acid) (PLGA) porogens to render the resulting CPC/PLGA composite degradable. In view of the multiple variables of CPC and PLGA used previously, the effect of CPC composition and PLGA porogen morphology (i.e., microspheres versus microparticles) on the biological performance of CPC/PLGA has not yet been investigated. Consequently, we here aimed to evaluate comparatively various CPC/PLGA formulations varying in CPC composition and PLGA porogen morphology on their performance in a rabbit femoral condyle bone defect model. CPCs with a composition of 85 wt% α-TCP, 15 wt% dicalcium phosphate anhydrate (DCPA) and 5 wt% precipitated hydroxyapatite (pHA), or 100 wt% α-TCP were combined with spherical or irregularly shaped PLGA porogens (CPC/PLGA ratio of 60:40 wt% for all formulations). All CPC/PLGA formulations were applied via injection in bone defects, as created in the femoral condyle of rabbits, and retrieved for histological evaluation after 6 and 12 weeks of implantation. Descriptive histology and quantitative histomorphometry (i.e., material degradation and new bone formation) were used for analyses. Descriptively, all CPC/PLGA formulations showed material degradation at the periphery of the cement within 6 weeks of implantation. After 12 weeks, bone formation was observed extending into the defect core, replacing the degraded CPC/PLGA material. Quantitatively, similar material degradation (up to 87%) and new bone formation (up to 28%) values were observed, irrespective of compositional variations of CPC/PLGA formulations. These data prove that neither the CPC compositions nor the PLGA porogen morphologies as used in this work affect the biological performance of CPC/PLGA formulations in a rabbit femoral condyle bone defect model.
Collapse
Affiliation(s)
| | | | - Dietmar J O Ulrich
- Department of Plastic and Reconstructive Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - John A Jansen
- Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
2
|
Huang L, Cai P, Bian M, Yu J, Xiao L, Lu S, Wang J, Chen W, Han G, Xiang X, Liu X, Jiang L, Li Y, Zhang J. Injectable and high-strength PLGA/CPC loaded ALN/MgO bone cement for bone regeneration by facilitating osteogenesis and inhibiting osteoclastogenesis in osteoporotic bone defects. Mater Today Bio 2024; 26:101092. [PMID: 38873105 PMCID: PMC11169522 DOI: 10.1016/j.mtbio.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Osteoporosis (OP) can result in slower bone regeneration than the normal condition due to the imbalance between osteogenesis and osteoclastogenesis, making osteoporotic bone defects healing a significant clinical challenge. Calcium phosphate cement (CPC) is a promising bone substitute material due to its good osteoinductive activity, however, the drawbacks such as fragility, slow degradation rate and incapability to control bone loss restrict its application in osteoporotic bone defects treatment. Currently, we developed the PLGA electrospun nanofiber sheets to carry alendronate (ALN) and magnesium oxide nanoparticle (nMgO) into CPC, therefore, to obtain a high-strength bone cement (C/AM-PL/C). The C/AM-PL/C bone cement had high mechanical strength, anti-washout ability, good injection performance and drug sustained release capacity. More importantly, the C/AM-PL/C cement promoted the osteogenic differentiation of bone marrow mesenchymal stem cells and neovascularization via the release of Mg2+ (from nMgO) and Ca2+ (during the degradation of CPC), and inhibited osteoclastogenesis via the release of ALN in vitro. Moreover, the injection of C/AM-PL/C cement significantly improved bone healing in an OP model with femur condyle defects in vivo. Altogether, the injectable C/AM-PL/C cement could facilitate osteoporotic bone regeneration, demonstrating its capacity as a promising candidate for treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Peihao Cai
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Gold COast, QLD, 4222, Australia
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisin Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guanjie Han
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xingdong Xiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Liu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Lun DX, Li SY, Li NN, Mou LM, Li HQ, Zhu WP, Li HF, Hu YC. Limitations and modifications in the clinical application of calcium sulfate. Front Surg 2024; 11:1278421. [PMID: 38486794 PMCID: PMC10937423 DOI: 10.3389/fsurg.2024.1278421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Calcium sulfate and calcium sulfate-based biomaterials have been widely used in non-load-bearing bone defects for hundreds of years due to their superior biocompatibility, biodegradability, and non-toxicity. However, lower compressive strength and rapid degradation rate are the main limitations in clinical applications. Excessive absorption causes a sharp increase in sulfate ion and calcium ion concentrations around the bone defect site, resulting in delayed wound healing and hypercalcemia. In addition, the space between calcium sulfate and the host bone, resulting from excessively rapid absorption, has adverse effects on bone healing or fusion techniques. This issue has been recognized and addressed. The lack of sufficient mechanical strength makes it challenging to use calcium sulfate and calcium sulfate-based biomaterials in load-bearing areas. To overcome these defects, the introduction of various inorganic additives, such as calcium carbonate, calcium phosphate, and calcium silicate, into calcium sulfate is an effective measure. Inorganic materials with different physical and chemical properties can greatly improve the properties of calcium sulfate composites. For example, the hydrolysis products of calcium carbonate are alkaline substances that can buffer the acidic environment caused by the degradation of calcium sulfate; calcium phosphate has poor degradation, which can effectively avoid the excessive absorption of calcium sulfate; and calcium silicate can promote the compressive strength and stimulate new bone formation. The purpose of this review is to review the poor properties of calcium sulfate and its complications in clinical application and to explore the effect of various inorganic additives on the physicochemical properties and biological properties of calcium sulfate.
Collapse
Affiliation(s)
- Deng-xing Lun
- Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City, Shandong, China
| | - Si-ying Li
- Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City, Shandong, China
| | - Nian-nian Li
- Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City, Shandong, China
| | - Le-ming Mou
- Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City, Shandong, China
| | - Hui-quan Li
- Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City, Shandong, China
| | - Wan-ping Zhu
- Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City, Shandong, China
| | - Hong-fei Li
- Department of Spinal Degeneration and Oncology, Weifang People’s Hospital, Weifang City, Shandong, China
| | - Yong-cheng Hu
- Department of Bone Oncology, Tianjin Hospital, Tianjin, China
| |
Collapse
|
4
|
van Houdt CIA, Ulrich DJO, Jansen JA, van den Beucken JJJP. The performance of CPC/PLGA and Bio-Oss ® for bone regeneration in healthy and osteoporotic rats. J Biomed Mater Res B Appl Biomater 2016; 106:131-142. [PMID: 27889939 DOI: 10.1002/jbm.b.33801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/23/2016] [Indexed: 12/24/2022]
Abstract
The current study aimed to evaluate the biological performance of calcium phosphate cement (CPC) with polylactic-co-glycolic acid (PLGA) micro-particles and Bio-Oss® in ovariectomized and healthy rats. Thirty-two Wistar rats received alternating experimental CPC/PLGA and Bio-Oss® in femoral condyle defects in both femurs 6 weeks after ovariectomy (OVX, n = 16) or sham operation (SHAM, n = 16). Six weeks after OVX or SHAM surgery, bone morphology was analyzed by in vivo computed tomography (CT) to confirm osteoporotic bone condition. Analysis of bone formation and material remnants at 4 and 12 weeks after material implantation was performed by micro-CT, descriptive histology, histomorphometry and bone dynamics by fluorochrome labeling. The in vivo CT scans showed effective induction of osteoporotic bone condition by ovariectomy. Our data showed CPC/PLGA degraded relatively faster and more steadily. However, Bio-Oss® had significantly less material remnants and showed significantly more bone formation compared to CPC/PLGA. Overall, our data showed relatively high amounts of CPC/PLGA for each time point, hampering new bone formation within the defect area. Osteoporotic conditions proved to significantly affect degradation rates, but did not significantly influence bone formation. An osteoporotic bone condition affects degradation of CPC/PLGA, which is vital information for its potential use in osteoporotic conditions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 131-142, 2018.
Collapse
Affiliation(s)
| | - Dietmar J O Ulrich
- Radboudumc, Department of Plastic, Reconstructive and Hand Surgery, Nijmegen, the Netherlands
| | - John A Jansen
- Radboudumc, Department of Biomaterials, Nijmegen, the Netherlands
| | | |
Collapse
|
5
|
Fernandes KR, Magri AMP, Kido HW, Ueno F, Assis L, Fernandes KPS, Mesquita-Ferrari RA, Martins VC, Plepis AM, Zanotto ED, Peitl O, Ribeiro D, van den Beucken JJ, Renno ACM. Characterization and biological evaluation of the introduction of PLGA into biosilicate®. J Biomed Mater Res B Appl Biomater 2016; 105:1063-1074. [DOI: 10.1002/jbm.b.33654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. R. Fernandes
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - A. M. P. Magri
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - H. W. Kido
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - F. Ueno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - L. Assis
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - K. P. S. Fernandes
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - R. A. Mesquita-Ferrari
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - V. C. Martins
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - A. M. Plepis
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - E. D. Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - O. Peitl
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - D. Ribeiro
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | | | - A. C. M. Renno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| |
Collapse
|
6
|
Xia L, Yin Z, Mao L, Wang X, Liu J, Jiang X, Zhang Z, Lin K, Chang J, Fang B. Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration. Sci Rep 2016; 6:22005. [PMID: 26911441 PMCID: PMC4766478 DOI: 10.1038/srep22005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
It is a big challenge for bone healing under osteoporotic pathological condition with impaired angiogenesis, osteogenesis and remodeling. In the present study, the effect of Ca, Mg, Si containing akermanite bioceramics (Ca2MgSi2O7) extract on cell proliferation, osteogenic differentiation and angiogenic factor expression of BMSCs derived from ovariectomized rats (BMSCs-OVX) as well as the expression of osteoclastogenic factors was evaluated. The results showed that akermanite could enhance cell proliferation, ALP activity, expression of Runx2, BMP-2, BSP, OPN, OCN, OPG and angiogenic factors including VEGF and ANG-1. Meanwhile, akermanite could repress expression of osteoclastogenic factors including RANKL and TNF-α. Moreover, akermanite could activate ERK, P38, AKT and STAT3 signaling pathways, while crosstalk among these signaling pathways was evident. More importantly, the effect of akermanite extract on RANKL-induced osteoclastogenesis was evaluated by TRAP staining and real-time PCR assay. The results showed that akermanite could suppress osteoclast formation and expression of TRAP, cathepsin K and NFATc1. The in vivo experiments revealed that akermanite bioceramics dramatically stimulated osteogenesis and angiogenesis in an OVX rat critical-sized calvarial defect model. All these results suggest that akermanite bioceramics with the effects of Mg and Si ions on osteogenesis, angiogenesis and osteoclastogenesis are promising biomaterials for osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Lunguo Xia
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Zhilan Yin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lixia Mao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Xiuhui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Xinquan Jiang
- Oral Bioengineering and regenerative medicine Lab, Shanghai Research Institute of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,School &Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bing Fang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| |
Collapse
|
7
|
van Houdt CIA, Tim CR, Crovace MC, Zanotto ED, Peitl O, Ulrich DJO, Jansen JA, Parizotto NA, Renno AC, van den Beucken JJJP. Bone regeneration and gene expression in bone defects under healthy and osteoporotic bone conditions using two commercially available bone graft substitutes. ACTA ACUST UNITED AC 2015; 10:035003. [PMID: 25953955 DOI: 10.1088/1748-6041/10/3/035003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biosilicate(®) and Bio-Oss(®) are two commercially available bone substitutes, however, little is known regarding their efficacy in osteoporotic conditions. The purpose of this study was to evaluate the osteogenic properties of both materials, at tissue and molecular level. Thirty-six Wistar rats were submitted to ovariectomy (OVX) for inducing osteoporotic conditions and sham surgery (SHAM) as a control. Bone defects were created in both femurs, which were filled with Biosilicate(®) or Bio-Oss(®), and empty defects were used as control. For the healthy condition both Biosilicate(®) and Bio-Oss(®) did not improve bone formation after 4 weeks. Histomorphometric evaluation of osteoporotic bone defects with bone substitutes showed more bone formation, significant for Bio-Oss(®). Molecular biological evaluation was performed by gene-expression analysis (Runx-2, ALP, OC, OPG, RANKL). The relative gene expression was increased with Biosilicate(®) for all genes in OVX rats and for Runx-2, ALP, OC and RANKL in SHAM rats. In contrast, with Bio-Oss(®), the relative gene expression of OVX rats was similar for all three groups. For SHAM rats it was increased for Runx-2, ALP, OC and RANKL. Since both materials improved bone regeneration in osteoporotic conditions, our results suggest that bone defects in osteoporotic conditions can be efficiently treated with these two bone substitutes.
Collapse
|
8
|
Wang J, Zhang L, Sun X, Chen X, Xie K, Lin M, Yang G, Xu S, Xia W, Gou Z. Preparation and in vitro evaluation of strontium-doped calcium silicate/gypsum bioactive bone cement. Biomed Mater 2014; 9:045002. [PMID: 24945787 DOI: 10.1088/1748-6041/9/4/045002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The combination of two or more bioactive components with different biodegradability could cooperatively improve the physicochemical and biological performances of the biomaterials. Here we explore the use of α-calcium sulfate hemihydrate (α-CSH) and calcium silicate with and without strontium doping (Sr-CSi, CSi) to fabricate new bioactive cements with appropriate biodegradability as bone implants. The cements were fabricated by adding different amounts (0-35 wt%) of Sr-CSi (or CSi) into the α-CSH-based pastes at a liquid-to-solid ratio of 0.4. The addition of Sr-CSi into α-CSH cements not only led to a pH rise in the immersion medium, but also changed the surface reactivity of cements, making them more bioactive and therefore promoting apatite mineralization in simulated body fluid (SBF). The impact of additives on long-term in vitro degradation was evaluated by soaking the cements in Tris buffer, SBF, and α-minimal essential medium (α-MEM) for a period of five weeks. An addition of 20% Sr-CSi to α-CSH cement retarded the weight loss of the samples to 36% (in Tris buffer), 43% (in SBF) and 54% (in α-MEM) as compared with the pure α-CSH cement. However, the addition of CSi resulted in a slightly faster degradation in comparison with Sr-CSi in these media. Finally, the in vitro cell-ion dissolution products interaction study using human fetal osteoblast cells demonstrated that the addition of Sr-CSi improved cell viability and proliferation. These results indicate that tailorable bioactivity and biodegradation behavior can be achieved in gypsum cement by adding Sr-CSi, and such biocements will be of benefit for enhancing bone defect repair.
Collapse
Affiliation(s)
- Juncheng Wang
- Department of Orthopedics, Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Alexandrino EM, Ritz S, Marsico F, Baier G, Mailänder V, Landfester K, Wurm FR. Paclitaxel-loaded polyphosphate nanoparticles: a potential strategy for bone cancer treatment. J Mater Chem B 2014; 2:1298-1306. [DOI: 10.1039/c3tb21295e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
He F, Ye J. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:045010. [PMID: 27877603 PMCID: PMC5090329 DOI: 10.1088/1468-6996/14/4/045010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/26/2013] [Indexed: 06/06/2023]
Abstract
In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid) and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair.
Collapse
Affiliation(s)
- Fupo He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, People’s Republic of China
| |
Collapse
|