1
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
2
|
Mao S, Wu L, Shi W. Calcium, phosphorus, magnesium levels in frequent respiratory tract infections. Ann Med 2024; 55:2304661. [PMID: 38233369 PMCID: PMC10798295 DOI: 10.1080/07853890.2024.2304661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND It was well documented that calcium (Ca), phosphorus (P), and magnesium (Mg) participate in many physiological processes. We aimed to study the changing trend of serum levels of Ca, P, and Mg in frequent respiratory tract infections (FRTI) in children. METHODS A retrospective study was performed in our centre. A total of 213 FRTI cases and 33 controls were enrolled in our study. We analyzed the correlation between serum Ca/P/Mg levels and inflammatory indexes by using Spearman correlation analysis. Standard mean difference (SMD) was applied to test the differences of serum Ca/P/Mg levels between FRTI subgroups and controls. In terms of the findings of SMD between Ca/P/Mg status between FRTI subgroups and controls, receiver operating characteristics (ROC) curve analysis was further applied to test the association between serum Ca level and bronchitis, parainfluenza virus infection, influenza B virus infection and cytomegalovirus infection. RESULTS Serum Ca level was significantly associated with white blood cell (WBC), platelet (PLT) and procalcitonin (PCT) (p = 0.006; p < 10-4; p = 0.004). Serum P level was markedly associated with eryhtrocyte sedimentation rate (ESR) and PCT (p = 0.018; p < 10-4). Controls showed significantly lower serum Ca level than that among bronchitis (p = 0.001), parainfluenza virus infection (p = 0.027), influenza B virus infection (p = 0.017), cytomegalovirus infection (p = 0.029), and two pathogens infected (p = 0.020). ROC curve analysis showed that serum Ca level was significantly associated with bronchitis (p = 0.047) and influenza B virus infection (p = 0.049). CONCLUSIONS Serum levels of Ca and P may reflect the inflammatory status in children with FRTI. Alteration of serum Ca level may predict the risk of bronchitis and influenza B virus infection. Keeping the homeostasis of Ca, P, and Mg may be important for the prevention and treatment of FRTI.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Sixth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangxia Wu
- Department of Pediatrics, Shanghai Sixth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Shi
- Department of Pediatrics, Shanghai Sixth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
de Lima Barbosa R, Stellet Lourenço E, de Azevedo dos Santos JV, Rodrigues Santiago Rocha N, Mourão CF, Alves GG. The Effects of Platelet-Rich Fibrin in the Behavior of Mineralizing Cells Related to Bone Tissue Regeneration-A Scoping Review of In Vitro Evidence. J Funct Biomater 2023; 14:503. [PMID: 37888168 PMCID: PMC10607127 DOI: 10.3390/jfb14100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Platelet-rich fibrin (PRF) is a second-generation blood concentrate that serves as an autologous approach for both soft and hard tissue regeneration. It provides a scaffold for cell interaction and promotes the local release of growth factors. PRF has been investigated as an alternative to bone tissue therapy, with the potential to expedite wound healing and bone regeneration, though the mechanisms involved are not yet fully understood. This review aims to explore the in vitro evidence of PRF's effects on the behavior of mineralizing cells related to bone tissue regeneration. A systematic electronic search was conducted up to August 2023, utilizing three databases: PubMed, Web of Science, and Scopus. A total of 76 studies were selected, which presented in vitro evidence of PRF's usefulness, either alone or in conjunction with other biomaterials, for bone tissue treatment. PRF membranes' influence on the proliferation, differentiation, and mineralization of bone cells is linked to the constant release of growth factors, resulting in changes in crucial markers of bone cell metabolism and behavior. This further reinforces their therapeutic potential in wound healing and bone regeneration. While there are some notable differences among the studies, the overall results suggest a positive effect of PRF on cell proliferation, differentiation, mineralization, and a reduction in inflammation. This points to its therapeutic potential in the field of regenerative medicine. Collectively, these findings may help enhance our understanding of how PRF impacts basic physiological processes in bone and mineralized tissue.
Collapse
Affiliation(s)
- Renata de Lima Barbosa
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Emanuelle Stellet Lourenço
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
| | - Julya Vittoria de Azevedo dos Santos
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Neilane Rodrigues Santiago Rocha
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| |
Collapse
|
4
|
Farmani AR, Nekoofar MH, Ebrahimi Barough S, Azami M, Rezaei N, Najafipour S, Ai J. Application of Platelet Rich Fibrin in Tissue Engineering: Focus on Bone Regeneration. Platelets 2021; 32:183-188. [PMID: 33577378 DOI: 10.1080/09537104.2020.1869710] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone tissue engineering (BTE) is a strategy for reconstructing bone lesions, which is rapidly developing in response to higher demands for bone repairing. Recently, this method, along with the emergence of functionally graded, biocompatible and biodegradable materials, has been expanded. Moreover, scaffolds with chemical, physical and external patterns have induced bone regeneration. However, the maintenance of healthy bone and its regeneration in the human body needs a series of complex and accurate processes. Hence, many studies have been accompanied for reconstructing bone by using blood-derived biomaterials, especially platelet-rich fabricates. The most important reason for using platelet-rich formulations in bone regeneration is based on releasing growth factors from alpha granules in platelets, which can induce osteogenesis. Moreover, the presence of fibrin nano-fiber structures as a constituent can provide a good substrate for cell attachments. This study attempts to review the history, structure, and biology of platelet-rich fibrin (PRF) as well as in vitro, pre-clinical, and clinical studies on the use of PRF for bone regeneration.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Department-School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Ebrahimi Barough
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sohrab Najafipour
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins. Int J Mol Sci 2020; 21:ijms21072315. [PMID: 32230810 PMCID: PMC7177887 DOI: 10.3390/ijms21072315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.
Collapse
|
6
|
Yao R, Zhang B, Gao T, Zhang N, Wang Y, Meng G, He J, Wu F. Dopamine enhances the mechanical and biological properties of enzyme-induced mineralized hydrogels. J Mater Chem B 2020. [DOI: 10.1039/d0tb01774d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme-induced mineralization is an effective approach to improving the mechanical properties of acrylamide hydrogel and dopamine biofunctionalization can further significantly improve both the biological properties and the mechanical properties.
Collapse
Affiliation(s)
- Ruijuan Yao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Tao Gao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yao Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Guolong Meng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Jing He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Fang Wu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
7
|
Lopez-Heredia MA, Łapa A, Reczyńska K, Pietryga K, Balcaen L, Mendes AC, Schaubroeck D, Van Der Voort P, Dokupil A, Plis A, Stevens CV, Parakhonskiy BV, Samal SK, Vanhaecke F, Chai F, Chronakis IS, Blanchemain N, Pamuła E, Skirtach AG, Douglas TE. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. J Tissue Eng Regen Med 2018; 12:1825-1834. [DOI: 10.1002/term.2675] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Marco A. Lopez-Heredia
- Univ. Lille, Inserm, CHU Lille; U1008 - Controlled Drug Delivery Systems and Biomaterials; Lille France
| | - Agata Łapa
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Kraków Poland
| | - Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Kraków Poland
| | - Krzysztof Pietryga
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Kraków Poland
| | - Lieve Balcaen
- Department of Analytical Chemistry; Ghent University; Ghent Belgium
| | - Ana C. Mendes
- Nano-BioScience Research Group, DTU-Food; Technical University of Denmark (DTU); Kongens Lyngby Denmark
| | - David Schaubroeck
- Centre for Microsystems Technology (CMST), imec; Ghent University; Ghent Belgium
| | | | | | - Agnieszka Plis
- Institute for Chemical Processing of Coal (ICHPW); Zabrze Poland
| | - Chris V. Stevens
- Department of Sustainable Organic Chemistry and Technology; Ghent University; Ghent Belgium
| | - Bogdan V. Parakhonskiy
- Department Molecular Biotechology; Ghent University; Ghent Belgium
- Shubnikov Institute of Crystallography; FSRC “Crystallography and Photonics” RAS; Moscow Russia
| | - Sangram Keshari Samal
- Laboratory of General Biochemistry and Physical Pharmacy; Ghent University; Ghent Belgium
- Centre for Nano- and Biophotonics; Ghent University; Ghent Belgium
| | - Frank Vanhaecke
- Department of Analytical Chemistry; Ghent University; Ghent Belgium
| | - Feng Chai
- Univ. Lille, Inserm, CHU Lille; U1008 - Controlled Drug Delivery Systems and Biomaterials; Lille France
| | - Ioannis S. Chronakis
- Nano-BioScience Research Group, DTU-Food; Technical University of Denmark (DTU); Kongens Lyngby Denmark
| | - Nicolas Blanchemain
- Univ. Lille, Inserm, CHU Lille; U1008 - Controlled Drug Delivery Systems and Biomaterials; Lille France
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Kraków Poland
| | - Andre G. Skirtach
- Department Molecular Biotechology; Ghent University; Ghent Belgium
- Centre for Nano- and Biophotonics; Ghent University; Ghent Belgium
| | - Timothy E.L. Douglas
- Department Molecular Biotechology; Ghent University; Ghent Belgium
- Engineering Department; Lancaster University; Lancaster UK
- Materials Science Institute (MSI); Lancaster University; Lancaster UK
| |
Collapse
|
8
|
Douglas TEL, Schietse J, Zima A, Gorodzha S, Parakhonskiy BV, KhaleNkow D, Shkarin R, Ivanova A, Baumbach T, Weinhardt V, Stevens CV, Vanhoorne V, Vervaet C, Balcaen L, Vanhaecke F, Slośarczyk A, Surmeneva MA, Surmenev RA, Skirtach AG. Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization. J Biomed Mater Res A 2017; 106:822-828. [DOI: 10.1002/jbm.a.36277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Timothy E. L. Douglas
- Department of Molecular Biotechnology; Ghent University; Ghent Belgium
- Engineering Department; Lancaster University; Lancaster United Kingdom
- Materials Science Institute (MSI); Lancaster University; Lancaster United Kingdom
| | - Josefien Schietse
- Department of Molecular Biotechnology; Ghent University; Ghent Belgium
| | - Aneta Zima
- Department of Ceramics and Refractories; AGH University of Science and Technology; Kraków Poland
| | - Svetlana Gorodzha
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Tomsk Russia
| | - Bogdan V. Parakhonskiy
- Department of Molecular Biotechnology; Ghent University; Ghent Belgium
- FSRC “Crystallography and Photonics”; Shubnikov Institute of Crystallography; RAS Moscow Russia
- Institute of Nanostructures and Biosystems, Saratov State University; Saratov Russia
| | - Dmitry KhaleNkow
- Department of Molecular Biotechnology; Ghent University; Ghent Belgium
| | - Roman Shkarin
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Anna Ivanova
- FSRC “Crystallography and Photonics”; Shubnikov Institute of Crystallography; RAS Moscow Russia
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology; Karlsruhe Germany
- Laboratory for Applications of Synchrotron Radiation; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Venera Weinhardt
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology; Karlsruhe Germany
- Laboratory for Applications of Synchrotron Radiation; Karlsruhe Institute of Technology; Karlsruhe Germany
- Centre for Organismal Studies, University of Heidelberg; Heidelberg Germany
| | - Christian V. Stevens
- Department of Sustainable Organic Chemistry and Technology; Ghent University; Ghent Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology; Ghent University; Ghent Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology; Ghent University; Ghent Belgium
| | - Lieve Balcaen
- Department of Analytical Chemistry; Ghent University; Ghent, Belgium
| | - Frank Vanhaecke
- Department of Analytical Chemistry; Ghent University; Ghent, Belgium
| | - Anna Slośarczyk
- Engineering Department; Lancaster University; Lancaster United Kingdom
| | - Maria A. Surmeneva
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Tomsk Russia
| | - Roman A. Surmenev
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Tomsk Russia
| | - Andre G. Skirtach
- Department of Molecular Biotechnology; Ghent University; Ghent Belgium
- Centre for Nano- and Biophotonics; Ghent University; Ghent Belgium
| |
Collapse
|
9
|
Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization. Carbohydr Polym 2017; 182:254-264. [PMID: 29279122 DOI: 10.1016/j.carbpol.2017.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/17/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022]
Abstract
Polyelectrolyte complexes (PEC) of chitosan and ulvan were fabricated to study alkaline phosphatase (ALP) mediated formation of apatitic minerals. Scaffolds of the PEC were subjected to ALP and successful mineral formation was studied using SEM, Raman and XRD techniques. Investigation of the morphology via SEM shows globular structures of the deposited minerals, which promoted cell attachment, proliferation and extracellular matrix formation. The PEC and their successful calcium phosphate based mineralization offers a greener route of scaffold fabrication towards developing resorbable materials for tissue engineering.
Collapse
|
10
|
Douglas TEL, Łapa A, Reczyńska K, Krok-Borkowicz M, Pietryga K, Samal SK, Declercq HA, Schaubroeck D, Boone M, Van der Voort P, De Schamphelaere K, Stevens CV, Bliznuk V, Balcaen L, Parakhonskiy BV, Vanhaecke F, Cnudde V, Pamuła E, Skirtach AG. Novel injectable, self-gelling hydrogel–microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomed Mater 2016; 11:065011. [DOI: 10.1088/1748-6041/11/6/065011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Douglas TEL, Dokupil A, Reczyńska K, Brackman G, Krok-Borkowicz M, Keppler JK, Božič M, Van Der Voort P, Pietryga K, Samal SK, Balcaen L, van den Bulcke J, Van Acker J, Vanhaecke F, Schwarz K, Coenye T, Pamuła E. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich
Ecklonia cava
extract Seanol
®
to endow antibacterial properties and promote mineralization. Biomed Mater 2016; 11:045015. [DOI: 10.1088/1748-6041/11/4/045015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Hou L, Jin J, Lv J, Chen L, Zhu Y, Liu X. Constitution and in vivo test of micro-porous tubular scaffold for esophageal tissue engineering. J Biomater Appl 2015. [DOI: 10.1177/0885328215596285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Current clinical techniques in treating long-gap esophageal defects often lead to complications and high morbidity. Aiming at long-gap synthetic esophageal substitute, we had synthesized a biodegradable copolymer, poly(L-lactide-co-caprolactone) (PLLC), with low glass transition temperature. In this work, we developed a tubular PLLC porous scaffold using a self-designed tubular mold and thermal induced phase separation (TIPS) method. In order to enhance the interaction between tissue and scaffold, fibrin, a natural fibrous protein derived from blood fibrinogen, was coated on the scaffold circumferential surface. The fibrin density was measured to be 1.23 ± 0.04 mg/cm2. Primary epithelial cell culture demonstrated the improved in vitro biocompatibility. In animal study with partial scaffold implantation, in situ mucosa regeneration was observed along the degradation of the scaffold. These indicate that fibrin incorporated PLLC scaffold can greatly improve epithelial regeneration in esophagus repair, therefore serve as a good candidate for long-term evaluation of post-implantation at excision site.
Collapse
Affiliation(s)
- Lei Hou
- The Medical School, Ningbo University, Ningbo, China
| | - Jiachang Jin
- The Medical School, Ningbo University, Ningbo, China
| | - Jingjing Lv
- The Medical School, Ningbo University, Ningbo, China
| | - Ling Chen
- The Medical School, Ningbo University, Ningbo, China
| | - Yabin Zhu
- The Medical School, Ningbo University, Ningbo, China
| | | |
Collapse
|
13
|
Douglas TEL, Pilarz M, Lopez-Heredia M, Brackman G, Schaubroeck D, Balcaen L, Bliznuk V, Dubruel P, Knabe-Ducheyne C, Vanhaecke F, Coenye T, Pamula E. Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity. J Tissue Eng Regen Med 2015; 11:1610-1618. [PMID: 26174042 DOI: 10.1002/term.2062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/22/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022]
Abstract
Gellan gum hydrogels functionalized with alkaline phosphatase were enzymatically mineralized with phosphates in mineralization medium containing calcium (Ca) and zinc (Zn) to improve their suitability as biomaterials for bone regeneration. The aims of the study were to endow mineralized hydrogels with antibacterial activity by incorporation of Zn in the inorganic phase, and to investigate the effect of Zn incorporation on the amount and type of mineral formed, the compressive modulus of the mineralized hydrogels and on their ability to support adhesion and growth of MC3T3-E1 osteoblast-like cells. Mineralization medium contained glycerophosphate (0.05 m) and three different molar Ca:Zn ratios, 0.05:0, 0.04:0.01 and 0.025:0.025 (all mol/dm3 ), hereafter referred to as A, B and C, respectively. FTIR, SAED and TEM analysis revealed that incubation for 14 days caused the formation of predominantly amorphous mineral phases in sample groups A, B and C. The presence of Zn in sample groups B and C was associated with a drop in the amount of mineral formed and a smaller mineral deposit morphology, as observed by SEM. ICP-OES revealed that Zn was preferentially incorporated into mineral compared to Ca. Mechanical testing revealed a decrease in compressive modulus in sample group C. Sample groups B and C, but not A, showed antibacterial activity against biofilm-forming, methicillin-resistant Staphylococcus aureus. All sample groups supported cell growth. Zn incorporation increased the viable cell number. The highest values were seen on sample group C. In conclusion, the sample group containing the most Zn, i.e. group C, appears to be the most promising. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy E L Douglas
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Belgium
| | - Magdalena Pilarz
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Marco Lopez-Heredia
- Department of Experimental and Orofacial Medicine, Faculty of Dentistry, Philipps University, Marburg, Germany
| | - Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - David Schaubroeck
- Centre for Microsystems Technology (CMST), IMEC, and Ghent University, Belgium
| | - Lieve Balcaen
- Department of Analytical Chemistry, Ghent University, Belgium
| | - Vitaliy Bliznuk
- Department of Materials Science and Engineering, Zwijnaarde, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Belgium
| | - Christine Knabe-Ducheyne
- Department of Experimental and Orofacial Medicine, Faculty of Dentistry, Philipps University, Marburg, Germany
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Elzbieta Pamula
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
14
|
Development of thermosensitive hydrogels of chitosan, sodium and magnesium glycerophosphate for bone regeneration applications. J Funct Biomater 2015; 6:192-203. [PMID: 25859630 PMCID: PMC4493507 DOI: 10.3390/jfb6020192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/17/2022] Open
Abstract
Thermosensitive injectable hydrogels based on chitosan neutralized with sodium beta-glycerophosphate (Na-β-GP) have been studied as biomaterials for drug delivery and tissue regeneration. Magnesium (Mg) has been reported to stimulate adhesion and proliferation of bone forming cells. With the aim of improving the suitability of the aforementioned chitosan hydrogels as materials for bone regeneration, Mg was incorporated by partial substitution of Na-β-GP with magnesium glycerophosphate (Mg-GP). Chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were also loaded with the enzyme alkaline phosphatase (ALP) which induces hydrogel mineralization. Hydrogels were characterized physicochemically with respect to mineralizability and gelation kinetics, and biologically with respect to cytocompatibility and cell adhesion. Substitution of Na-β-GP with Mg-GP did not negatively influence mineralizability. Cell biological testing showed that both chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were cytocompatible towards MG63 osteoblast-like cells. Hence, chitosan/Na-β-GP/Mg-GP hydrogels can be used as an alternative to chitosan/Na-β-GP hydrogels for bone regeneration applications. However the incorporation of Mg in the hydrogels during hydrogel formation did not bring any appreciable physicochemical or biological benefit.
Collapse
|
15
|
Douglas TEL, Piwowarczyk W, Pamula E, Liskova J, Schaubroeck D, Leeuwenburgh SCG, Brackman G, Balcaen L, Detsch R, Declercq H, Cholewa-Kowalska K, Dokupil A, Cuijpers VMJI, Vanhaecke F, Cornelissen R, Coenye T, Boccaccini AR, Dubruel P. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 2014; 9:045014. [PMID: 25065649 DOI: 10.1088/1748-6041/9/4/045014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogels of biocompatible calcium-crosslinkable polysaccharide gellan gum (GG) were enriched with bioglass particles to enhance (i) mineralization with calcium phosphate (CaP); (ii) antibacterial properties and (iii) growth of bone-forming cells for future bone regeneration applications. Three bioglasses were compared, namely one calcium-rich and one calcium-poor preparation both produced by a sol-gel technique (hereafter referred to as A2 and S2, respectively) and one preparation of composition close to that of the commonly used 45S5 type (hereafter referred to as NBG). Incubation in SBF for 7 d, 14 d and 21 d caused apatite formation in bioglass-containing but not in bioglass-free samples, as confirmed by FTIR, XRD, SEM, ICP-OES, and measurements of dry mass, i.e. mass attributable to polymer and mineral and not water. Mechanical testing revealed an increase in compressive modulus in samples containing S2 and NBG but not A2. Antibacterial testing using biofilm-forming meticillin-resistant staphylococcus aureus (MRSA) showed markedly higher antibacterial activity of samples containing A2 and S2 than samples containing NBG and bioglass-free samples. Cell biological characterization using rat mesenchymal stem cells (rMSCs) revealed a stimulatory effect of NBG on rMSC differentiation. The addition of bioglass thus promotes GG mineralizability and, depending on bioglass type, antibacterial properties and rMSC differentiation.
Collapse
Affiliation(s)
- Timothy E L Douglas
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dash M, Samal SK, Bartoli C, Morelli A, Smet PF, Dubruel P, Chiellini F. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3211-3218. [PMID: 24494863 DOI: 10.1021/am404912c] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photo-cross-linked ulvan scaffolds were designed with the aim to induce and support enzyme mediated formation of apatite minerals, in the absence of osteogenic growth factors. Scaffold formation with a desired geometry was investigated using chemically modified ulvan bearing radically polymerizable groups. Further bioactivity was incorporated by the use of alkaline phosphatase (ALP) induced minerals. Successful modification of UV cross-linked ulvan scaffolds was revealed by (1)H NMR. The presence of the mineral formation was evidenced by Raman spectroscopy and XRD techniques. Investigations of the morphology confirmed the homogeneous mineralization using ALP. The MC3T3 cell activity clearly showed that the mineralization of the biofunctionalized ulvan scaffolds was effective in improving the cellular activity.
Collapse
Affiliation(s)
- Mamoni Dash
- Polymer Chemistry & Biomaterials Research Group, Ghent University , Krijgslaan 281, S4-Bis, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|