1
|
Liao TT, Li X, Ma DL, Leng YX. In Vitro and In Vivo Evaluation of Toxicity of Structurally Different Diamond-Like Carbon Wear Debris in Joint Replacements. ACS Biomater Sci Eng 2024; 10:5675-5688. [PMID: 39108014 DOI: 10.1021/acsbiomaterials.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Diamond-like carbon (DLC) wear debris, which is often composed of different types of structures, is generated from DLC-modified artificial joints in the human body, and its biocompatibility evaluation is especially important to prevent wear-debris-induced implant failure. Here, RAW 264.7 macrophages (inflammatory-reaction assay) and primary mouse osteoblasts (osteoblastogenesis assay) were employed to investigate the toxicity of DLC wear particles (DWPs) by evaluation of cell viability and morphology, enzyme-linked immunosorbent assays, and quantitative reverse-transcription polymerase chain reaction (PCR). Relevant histopathological analysis of rat joints was also performed in vivo. We found that DWPs with a relatively high sp2/sp3 ratio (graphite-phase tendency) manifested a higher cytotoxicity and significant inhibition of osteoblastogenesis. DWPs with a relatively low sp2/sp3 ratio (diamond-phase tendency) showed good biocompatibility in vivo. The DWPs exhibiting a low sp2/sp3 ratio demonstrated reduced secretion of TNF-α and IL-6, along with increased secretion of TIMP-1, resulting in the downregulation of MMP-2 and MMP-9 and upregulation of interleukin-10 (IL-10), thereby attenuating the inflammatory response. Moreover, coculturing osteoblasts with DWPs exhibiting a low sp2/sp3 ratio resulted in an elevated OPG/RANKL ratio and increased expression of OPG mRNA. Because of the absence of electrostatic repulsion, DWPs with a relatively low sp2/sp3 ratio enhanced bovine serum albumin adsorption, which favored cellular activities. Cytotoxicity assessment of DWPs can help establish an evaluation system for particle-related joint disease and can facilitate the clinical application of DLC-coated prostheses.
Collapse
Affiliation(s)
- T T Liao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China
- Sichuan Province International Science and Technology Cooperation Base of Functional Materials, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - X Li
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - D L Ma
- College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China
| | - Y X Leng
- Sichuan Province International Science and Technology Cooperation Base of Functional Materials, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
2
|
Lin L, Zheng Y, Wang C, Li P, Xu D, Zhao W. Concentration-Dependent Cellular Uptake of Graphene Oxide Quantum Dots Promotes the Odontoblastic Differentiation of Dental Pulp Cells via the AMPK/mTOR Pathway. ACS OMEGA 2023; 8:5393-5405. [PMID: 36816699 PMCID: PMC9933470 DOI: 10.1021/acsomega.2c06508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
As zero-dimension nanoparticles, graphene oxide quantum dots (GOQDs) have broad potential for regulating cell proliferation and differentiation. However, such regulation of dental pulp cells (DPSCs) with different concentrations of GOQDs is insufficiently investigated, especially on the molecular mechanism. The purpose of this study was to explore the effect and molecular mechanism of GOQDs on the odontoblastic differentiation of DPSCs and to provide a theoretical basis for the repair of pulp vitality by pulp capping. CCK-8, immunofluorescence staining, alkaline phosphatase activity assay and staining, alizarin red staining, qRT-PCR, and western blotting were used to detect the proliferation and odontoblastic differentiation of DPSC coculturing with different concentrations of GOQDs. The results indicate that the cellular uptake of low concentration of GOQDs (0.1, 1, and 10 μg/mL) could promote the proliferation and odontoblastic differentiation of DPCSs. Compared with other concentration groups, 1 μg/mL GOQDs show better ability in such promotion. In addition, with the activation of the AMPK signaling pathway, the mTOR signaling pathway was inhibited in DPSCs after coculturing with GOQDs, which indicates that low concentrations of GOQDs could regulate the odontoblastic differentiation of DPSCs by the AMPK/mTOR signaling pathway.
Collapse
|
3
|
Xu D, Wang C, Wu J, Fu Y, Li S, Hou W, Lin L, Li P, Yu D, Zhao W. Effects of Low-Concentration Graphene Oxide Quantum Dots on Improving the Proliferation and Differentiation Ability of Bone Marrow Mesenchymal Stem Cells through the Wnt/β-Catenin Signaling Pathway. ACS OMEGA 2022; 7:13546-13556. [PMID: 35559202 PMCID: PMC9088760 DOI: 10.1021/acsomega.1c06892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide quantum dots (GOQDs) are considered to be a new method for regulating the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). However, there are few reports on such regulation with different concentrations of GOQDs, and the molecular mechanism has not been fully elucidated. The purposes of this study were, first, to explore the effects of GOQDs on the proliferation and differentiation of BMSCs in vitro and in vivo, and, second, to provide a theoretical basis for the repair of bone defects. Live/Dead staining, EdU staining, immunofluorescence staining, alkaline phosphatase (ALP), western blotting, and qT-PCR were used for detecting the proliferation and differentiation of BMSCs after coculture with GOQDs of different concentrations. Hematoxylin and eosin (HE) staining and Van Gieson (VG) staining were used to detect new bone regeneration in vivo. The results showed that low-concentration GOQDs (0.1 and 1 μg/mL) promoted the proliferation and differentiation of BMSCs. Compared with the 1 μg/mL GOQD group, the 0.1 μg/mL GOQD group had better ability to promote the proliferation and differentiation of BMSCs. HE and VG staining results showed the greatest proportion of new bone area on sandblasted, large-grit, and acid-etched (SLA)/GOQD scaffolds. Furthermore, the ratio of active β-catenin and the phosphorylation level of GSK-3β (p-GSK-3β) increased after BMSCs treatment with 0.1 μg/mL GOQDs. Low concentrations of GOQDs improved the osteogenic differentiation ability of BMSCs by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Duoling Xu
- Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P. R. China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, P. R. China
| | - Chao Wang
- Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P. R. China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, P. R. China
| | - Jie Wu
- Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P. R. China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, P. R. China
| | - Yuanxiang Fu
- School
of Chemical Engineering & Guizhou Provincial Key Laboratory of
Energy Chemistry, Guizhou Institute of Technology, Guiyang 550003 P. R. China
| | - Shujun Li
- Institute
of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, P. R. China
| | - Wentao Hou
- Institute
of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, P. R. China
| | - Ling Lin
- Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P. R. China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, P. R. China
| | - Pei Li
- Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P. R. China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, P. R. China
| | - Dongsheng Yu
- Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P. R. China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, P. R. China
| | - Wei Zhao
- Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P. R. China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, P. R. China
| |
Collapse
|
4
|
Zhu Y, Tang Y, Ruan Z, Dai Y, Li Z, Lin Z, Zhao S, Cheng L, Sun B, Zeng M, Zhu J, Zhao R, Lu B, Long H. Mg(OH) 2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species. J Biomed Mater Res A 2021; 109:2369-2380. [PMID: 34110087 DOI: 10.1002/jbm.a.37219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022]
Abstract
Infection often causes disastrous consequences in all fields of clinical medicine, especially orthopedics. Hence, critical efforts are being made to engineer novel nanomaterials for the treatment of orthopedic infections due to the high biocompatibility and antibacterial properties they possess. The purpose of this study was to investigate the antibacterial effects of magnesium hydroxide (Mg(OH)2 ) nanoparticles (NPs) in vitro and determine their possible mechanisms of action. In this study, Escherichia coli was selected as the pathogenic bacteria and it was found that Mg(OH)2 NPs significantly inhibited the growth of E. coli by promoting nucleic acid leakage, inhibiting protein synthesis, and suppressing the metabolic activity. The minimum inhibitory concentration for these bacteria was determined to be 4.4 μg/ml. In vitro flow cytometry and immunofluorescence tests indicated that Mg(OH)2 NPs induced the macrophages to generate reactive oxygen species to kill the bacteria. To understand the mechanisms involved in this process, western blotting was performed and it was found that Mg(OH)2 NPs activated the phosphatidylinositol-3-kinase/serine-threonine kinase (PI3K/Akt) signaling pathway of macrophages to enhance their phagocytosis with no obvious cytotoxicity. Thus, Mg(OH)2 NPs are a suitable choice to develop promising agents or coating materials for the treatment of clinically widespread infections in view of their safety, biocompatibility, and powerful antibacterial properties.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yifu Tang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yilong Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, China
| | - Zhaohui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Shushan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Buhua Sun
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ruibo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Bangbao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020; 94:1915-1939. [DOI: 10.1007/s00204-020-02717-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|
6
|
Wang Y, Li C, Du L, Liu Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Filho LC, Schmidt S, López A, Cogrel M, Leifer K, Engqvist H, Högberg H, Persson C. The Effect of Coating Density on Functional Properties of SiN x Coated Implants. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3370. [PMID: 31618981 PMCID: PMC6829552 DOI: 10.3390/ma12203370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 11/17/2022]
Abstract
Ceramic coatings may be applied onto metallic components of joint replacements for improved wear and corrosion resistance as well as enhanced biocompatibility, especially for metal-sensitive patients. Silicon nitride (SiNx) coatings have recently been developed for this purpose. To achieve a high coating density, necessary to secure a long-term performance, is however challenging, especially for sputter deposited SiNx coatings, since these coatings are insulating. This study investigates the time-dependent performance of sputter-deposited SiNx based coatings for joint applications. SiNx coatings with a thickness in the range of 4.3-6.0 µm were deposited by reactive high power impulse magnetron sputtering onto flat discs as well as hip heads made of CoCrMo. SiNx compositional analysis by X-ray photoelectron spectroscopy showed N/Si ratios between 0.8 and 1.0. Immersion of the flat disks in fetal bovine serum solution over time as well as short-term wear tests against ultra-high molecular weight polyethylene (UHMWPE) discs showed that a high coating density is required to inhibit tribocorrosion. Coatings that performed best in terms of chemical stability were deposited using a higher target power and process heating.
Collapse
Affiliation(s)
- Luimar Correa Filho
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden.
| | - Susann Schmidt
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.
| | - Alejandro López
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden.
| | - Mathilde Cogrel
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden.
| | - Klaus Leifer
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden.
| | - Håkan Engqvist
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden.
| | - Hans Högberg
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.
| | - Cecilia Persson
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden.
| |
Collapse
|
8
|
Grieco PW, Pascal S, Newman JM, Shah NV, Stroud SG, Sheth NP, Maheshwari AV. New alternate bearing surfaces in total hip arthroplasty: A review of the current literature. J Clin Orthop Trauma 2018; 9:7-16. [PMID: 29628677 PMCID: PMC5884051 DOI: 10.1016/j.jcot.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
As indications for total hip arthroplasty (THA) have expanded, the incidence of THA has increased among younger patients, who live longer and tend to place more strain on implants via higher activity levels. This demographical shift accentuates the importance of advancing innovation to ensure implant longevity for younger and more active patients. Future innovation, as it pertains to THA components, is likely to focus on modifying implant designs and tribology in conjunction with identification and application of newer biomaterials. By reviewing the literature for development status of various materials and novel design advancements in THA component outside of the standard highly cross-linked polyethylene, this investigation provided an update on the current and future status of design initiatives as they pertain to THA. Though the highlighted alternative bearing surfaces have shown promising in vitro and limited, yet encouraging clinical data, they lack larger and longer-term clinical trial results. Further research and innovation is warranted to identify the optimal bearing surface to most effectively accommodate for the trend of younger and more active patients undergoing THA. Implant longevity is crucial if the clinical success of THA is to be maintained.
Collapse
Affiliation(s)
- Preston W. Grieco
- Department of Orthopaedic Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Scott Pascal
- Department of Orthopaedic Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jared M. Newman
- Department of Orthopaedic Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Neil V. Shah
- Department of Orthopaedic Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sarah G. Stroud
- Department of Orthopaedic Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Neil P. Sheth
- Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, 1 Cathcart 800 Spruce Street, Philadelphia, PA 19107, USA
| | - Aditya V. Maheshwari
- Department of Orthopaedic Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA,Corresponding author at: Adult Reconstruction and Musculoskeletal Oncology Divisions SUNY Downstate Medical Center 450 Clarkson Ave., Box 3 Box 3 Box 30 Brooklyn, NY 11203, USA.
| |
Collapse
|