1
|
Ibrahim DM, Fomina A, Bouten CVC, Smits AIPM. Functional regeneration at the blood-biomaterial interface. Adv Drug Deliv Rev 2023; 201:115085. [PMID: 37690484 DOI: 10.1016/j.addr.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The use of cardiovascular implants is commonplace in clinical practice. However, reproducing the key bioactive and adaptive properties of native cardiovascular tissues with an artificial replacement is highly challenging. Exciting new treatment strategies are under development to regenerate (parts of) cardiovascular tissues directly in situ using immunomodulatory biomaterials. Direct exposure to the bloodstream and hemodynamic loads is a particular challenge, given the risk of thrombosis and adverse remodeling that it brings. However, the blood is also a source of (immune) cells and proteins that dominantly contribute to functional tissue regeneration. This review explores the potential of the blood as a source for the complete or partial in situ regeneration of cardiovascular tissues, with a particular focus on the endothelium, being the natural blood-tissue barrier. We pinpoint the current scientific challenges to enable rational engineering and testing of blood-contacting implants to leverage the regenerative potential of the blood.
Collapse
Affiliation(s)
- Dina M Ibrahim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Aleksandra Fomina
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Graduate School of Life Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
2
|
Tellegen AR, Rudnik-Jansen I, Utomo L, Versteeg S, Beukers M, Maarschalkerweerd R, van Zuilen D, van Klaveren NJ, Houben K, Teske E, van Weeren PR, Karssemakers-Degen N, Mihov G, Thies J, Eijkelkamp N, Creemers LB, Meij BP, Tryfonidou MA. Sustained release of locally delivered celecoxib provides pain relief for osteoarthritis: a proof of concept in dog patients. Osteoarthritis Cartilage 2023; 31:351-362. [PMID: 36473675 DOI: 10.1016/j.joca.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Drug delivery platforms that allow for gradual drug release after intra-articular administration have become of much interest as a treatment strategy for osteoarthritis (OA). The aim of this study was to investigate the safety and efficacy of an intra-articular sustained release formulation containing celecoxib (CXB), a cyclooxygenase-2 (COX-2) selective inhibitor. METHODS Amino acid-based polyesteramide microspheres (PEAMs), a biodegradable and non-toxic platform, were loaded with CXB and employed in two in vivo models of arthritis: an acute inflammatory arthritis model in rats (n = 12), and a randomized controlled study in chronic OA dog patients (n = 30). In parallel, the bioactivity of sustained release of CXB was evaluated in monolayer cultures of primary dog chondrocytes under inflammatory conditions. RESULTS Sustained release of CXB did not alleviate acute arthritis signs in the rat arthritis model, based on pain measurements and synovitis severity. However, in OA dog patients, sustained release of CXB improved limb function as objective parameter of pain and quality of life based on gait analysis and owner questionnaires. It also decreased pain medication dependency over a 2-month period and caused no adverse effects. Prostaglandin E2 levels, a marker for inflammation, were lower in the synovial fluid of CXB-treated dog OA patients and in CXB-treated cultured dog chondrocytes. CONCLUSION These results show that local sustained release of CXB is less suitable to treat acute inflammation in arthritic joints, while safe and effective in treating pain in chronic OA in dogs.
Collapse
Affiliation(s)
- A R Tellegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - I Rudnik-Jansen
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - L Utomo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - S Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Beukers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - R Maarschalkerweerd
- Department of Orthopedics, Medisch Centrum voor Dieren, Amsterdam, the Netherlands
| | - D van Zuilen
- Department of Orthopedics, Medisch Centrum voor Dieren, Amsterdam, the Netherlands
| | - N J van Klaveren
- Department of Orthopedics, Medisch Centrum voor Dieren, Amsterdam, the Netherlands
| | - K Houben
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - E Teske
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P R van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - G Mihov
- DSM Biomedical, Geleen, the Netherlands
| | - J Thies
- DSM Biomedical, Geleen, the Netherlands
| | - N Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - L B Creemers
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - B P Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - M A Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Assessing the response of human primary macrophages to defined fibrous architectures fabricated by melt electrowriting. Bioact Mater 2023; 21:209-222. [PMID: 36101857 PMCID: PMC9440261 DOI: 10.1016/j.bioactmat.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023] Open
|
4
|
Schlundt C, Fischer H, Bucher CH, Rendenbach C, Duda GN, Schmidt-Bleek K. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Acta Biomater 2021; 133:46-57. [PMID: 33974949 DOI: 10.1016/j.actbio.2021.04.052] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
To present knowledge, macrophages are found in all tissues of the human body. They are a cell population with high plasticity which come with a multitude of functions which appear to be adapted to the respective tissue niche and micro-environment in which they reside. Bone harbors multiple macrophage subpopulations, with the osteoclasts as classical representative of a bone resorbing cells and osteomacs as a bone tissue resident macrophage first described by the expression of F4/80. Both subtypes are found throughout all phases in bone healing. In vivo data on bone regeneration have demonstrated their essential role in initiating the healing cascade (inflammatory phase) but also of the later phases of healing (e.g. endochondral and intramembranous bone formation). To participate in such diverse processes macrophages have to be highly plastic in their functionality. Thus, the widely used M1/M2 paradigm to distinguish macrophage subpopulations may not mirror the comprehensive role of the dynamics of macrophage plasticity. From a clinical perspective it is especially relevant to distinguish what drives macrophages in impaired healing scenarios, implant loosening or infections, where their specific role of a misbalanced inflammatory setting is so far only partially known. With this review we aim at illustrating current knowledge and gaps of knowledge on macrophage plasticity and function during the cascades of regeneration and reconstitution of bone tissue. We propose aspects of the known biological mechanisms of macrophages and their specific subsets that might serve as targets to control their function in impaired healing and eventually support a scar-free regeneration. STATEMENT OF SIGNIFICANCE: Macrophages are essential for successful regeneration. In scar-free healing such as in bone, a complete failure of healing was shown if macrophages were depleted; the M1/M2 switch appears to be key to the progression from pro-inflammation to regeneration. However, experimental data illustrate that the classical M1/M2 paradigm does not completely mirror the complexity of observed macrophage functions during bone healing and thus demands a broader perspective. Within this review we discuss the high degree of plasticity of macrophages and the relevant contribution of the different and more specific M2 subtypes (M2a-M2f) during (bone) regeneration. It summarizes the versatile roles of macrophages in skeletal regeneration and thereby highlights potential target points for immunomodulatory approaches to enable or even foster bone repair.
Collapse
|
5
|
Mora-Navarro C, Ozpinar EW, Sze D, Martin DP, Freytes DO. Transcriptome-targeted analysis of human peripheral blood-derived macrophages when cultured on biomaterial meshes. Biomed Mater 2021; 16:025006. [PMID: 33445160 DOI: 10.1088/1748-605x/abdbdb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surgical meshes are commonly used to repair defects and support soft tissues. Macrophages (Mφs) are critical cells in the wound healing process and are involved in the host response upon foreign biomaterials. There are various commercially available permanent and absorbable meshes used by surgeons for surgical interventions. Polypropylene (PP) meshes represent a permanent biomaterial that can elicit both inflammatory and anti-inflammatory responses. In contrast, poly-4-hydroxybutyrate (P4HB) based meshes are absorbable and linked to positive clinical outcomes but have a poorly characterized immune response. This study evaluated the in vitro targeted transcriptomic response of human Mφs seeded for 48 h on PP and P4HB surgical meshes. The in vitro measured response from human Mφs cultured on P4HB exhibited inflammatory and anti-inflammatory gene expression profiles typically associated with wound healing, which aligns with in vivo animal studies from literature. The work herein provides in vitro evidence for the early transcriptomic targeted signature of human Mφs upon two commonly used surgical meshes. The findings suggest a transition from an inflammatory to a non-inflammatory phenotype by P4HB as well as an upregulation of genes annotated under the pathogen response pathway.
Collapse
Affiliation(s)
- Camilo Mora-Navarro
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, 4208D Engineering Building III, Raleigh, NC, United States of America. The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | | | | | | | | |
Collapse
|
6
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
7
|
Smits AI, Bouten CV. Tissue engineering meets immunoengineering: Prospective on personalized in situ tissue engineering strategies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|